Fermions on AdS

Chapter

Abstract

We construct the Feynman propagator for Dirac fermions on anti-de Sitter space-time and present an analytic expression for the bi-spinor of parallel transport. We then renormalise the vacuum expectation value of the stress-energy tensor and end by analysing its renormalised expectation value at finite temperatures.

References

  1. 1.
    B. Allen, T. Jacobson, Vector two-point functions in maximally symmetric spaces. Commun. Math. Phys. 103, 669–692 (1986)MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    V.E. Ambruş, E. Winstanley, Fermions on adS. Paper in preparationGoogle Scholar
  3. 3.
    R. Camporesi, A. Higuchi, Stress-energy tensors in anti-de Sitter spacetime. Phys. Rev. D 45, 3591–3603 (1992)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    S.M. Christensen, Regularization, renormalization, and covariant geodesic point separation. Phys. Rev. D 17, 946–963 (1978)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    I. Cotăescu, Dirac fermions in de Sitter and anti-de Sitter backgrounds. Rom. J. Phys. 52, 895–940 (2007)MATHGoogle Scholar
  6. 6.
    C. Dappiaggi, T.-P. Hack, N. Pinamonti, The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241–1312 (2009)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    W. Mück, Spinor parallel propagator and Green’s function in maximally symmetric spaces. J. Phys. A 33, 3021–3026 (2000)MATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    A.-H. Najmi, A.C. Ottewill, Quantum states and the Hadamard form. II. Energy minimization for spin-1/2 fields. Phys. Rev. D 30, 2573–2578 (1984)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Consortium for Fundamental Physics, School of Mathematics and StatisticsThe University of SheffieldSheffieldUK

Personalised recommendations