How to Render Neural Fields More Realistic

  • Axel HuttEmail author
  • Meysam Hashemi
  • Peter beim Graben
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 14)


Conventional neural field models describe well some experimental data, such as Local Field Potentials or electroencephalographic data. The work reviews recent extensions of neural field models and describes the activation and attenuation of spectral power in certain frequency bands subjected to the statistical properties of an external input and subjected to the properties of synaptic receptor efficacy and the heteroclinic transitions between meta-stable state as a model for event-related potentials.


Systems Kernels Heteroclinic orbits Input Models 



The authors thank Stefan Frisch and Heiner Drenhaus for conducting the ERP experiment. AH and MH acknowledge funding from the European Research Council for support under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement No.257253. PbG acknowledges financial support through a Heisenberg Fellowship of the German Research Foundation DFG (GR 3711/1-2).


  1. 1.
    Afraimovich VS, Zhigulin VP, Rabinovich MI. On the origin of reproducible sequential activity in neural circuits. Chaos. 2004;14(4):1123–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Ahissar E, Kleinfeld D. Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. Cereb Cortex. 2003;13:53–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Amari SI. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern. 1977;27:77–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Antkowiak B. Different actions of general anesthetics on the firing patterns of neocortical neurons mediated by the GABAA-receptor. Anesthesiology. 1999;91:500–11.CrossRefPubMedGoogle Scholar
  5. 5.
    Antkowiak B. In vitro networks: cortical mechanisms of anaesthetic action. Brit J Anaesth. 2002;89(1):102–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Atay FM, Hutt A. Neural fields with distributed transmission speeds and constant feedback delays. SIAM J Appl Dyn Syst. 2006;5(4):670–98.CrossRefGoogle Scholar
  7. 7.
    Barraclough NE, Perrett DI. From single cells to social perception. Phil Trans R Soc B. 2011;366(1571):1739–52.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Beim Graben P, Gerth S, Vasishth S. Towards dynamical system models of language-related brain potentials. Cogn Neurodyn. 2008;2(3):229–55.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Beim Graben P, Hutt A. Detecting recurrence domains of dynamical systems by symbolic dynamics. Phys Rev Lett. 2013;110(15):154101.CrossRefPubMedGoogle Scholar
  10. 10.
    Beim Graben P, Hutt A. Attractor and saddle node dynamics in heterogeneous neural fields. EPJ Nonlin Biomed Phys. 2014;2:4.Google Scholar
  11. 11.
    Beim Graben P, Rodrigues S. A biophysical observation model for field potentials of networks of leaky integrate-and-fire neurons. Front Comput Neurosci. 2013;6(100). doi: 10.3389/fncom.2012.00100.Google Scholar
  12. 12.
    Beim Graben P, Rodrigues S. On the electrodynamics of neural networks. In: Coombes S, Beim Graben P, Potthast R, Wright JJ, editors. Neural fields: theory and applications. Berlin: Springer; 2014.Google Scholar
  13. 13.
    Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW. Extra-synaptic gabaa receptors: form, pharmacology, and function. J Neurosc;2009;29(41):12757–63.CrossRefGoogle Scholar
  14. 14.
    Berman NJ, Maler L. Neural architecture of the electrosensory lateral line lobe: adaption for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering. J Exp Biol. 1999;202:1243–53.PubMedGoogle Scholar
  15. 15.
    Bojak I, Liley DTJ. Modeling the effects of anesthesia on the electroencephalogram. Phys Rev E. 2005;71:041902.CrossRefGoogle Scholar
  16. 16.
    Bressloff PC. Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D. 2001;155:83–100.CrossRefGoogle Scholar
  17. 17.
    Bressloff PC. Spatiotemporal dynamics of continuum neural fields. J Phys A. 2012;45(3):033001.CrossRefGoogle Scholar
  18. 18.
    Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. What geometric visual hallucinations tell us about the visual cortex. Neural Comput. 2002;14:473–91.CrossRefPubMedGoogle Scholar
  19. 19.
    Buonviso N, Amat C, Litaudon P, Roux S, Royet JP, Farget V, Sicard G. Rhythm sequence through the olfactory bulb layers during the time window of a respiratory cycle. Eur J Neurosci. 2003;17:1811–19.CrossRefPubMedGoogle Scholar
  20. 20.
    Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ. Thalamocortical model for a propofol-induced-rhythm associated with loss of consciousness. Proc Natl Acad Sci U S A. 2010;107(52):22665–70.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, Tavares-Stoeckel C, Habeeb K, Brown EN. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci U S A. 2011;108(21):8832–7.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Coombes S, Owen MR. Bumps, breathers, and waves in a neural network with spike frequency adaptation. Phys Rev Lett. 2005;94:148102.CrossRefPubMedGoogle Scholar
  23. 23.
    Coombes S, Lord GJ, Owen MR. Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Physica D. 2003;178:219–41.CrossRefGoogle Scholar
  24. 24.
    Coombes S, Venkov NA, Shiau L, Bojak I, Liley DTJ, Laing CR. Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys Rev E. 2007;76(5):051901.CrossRefGoogle Scholar
  25. 25.
    Coombes S, Laing CR, Schmidt H, Svanstedt N, Wyller JA. Waves in random neural media. Discrete Contin Dyn Syst A. 2012;32:2951–70.CrossRefGoogle Scholar
  26. 26.
    Doiron B, Chacron MJ, Maler L, Longtin A, Bastian J. Inhibitory feedback required for network burst responses to communication but not to prey stimuli. Nature. 2003;421:539–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Ermentrout GB, Cowan JD. A mathematical theory of visual hallucination patterns. Biol Cybern. 1979;34:137–50.CrossRefPubMedGoogle Scholar
  28. 28.
    Faugeras OD, Touboul JD, Cessac B. A constructive mean-field analysis of multi population neural networks with random synaptic weights and stochastic inputs. Front Comput Neurosci. 2008;3:1.Google Scholar
  29. 29.
    Folias SE, Bressloff PC. Stimulus-locked waves and breathers in an excitatory neural network. SIAM J Appl Math. 2005. 65:2067–92.CrossRefGoogle Scholar
  30. 30.
    Grassberger P. Toward a quantitative theory of self-generated complexity. Int J Theor Phys. 1986;25(9):907–38.CrossRefGoogle Scholar
  31. 31.
    Gross CG. Genealogy of the grandmother cell. Neuroscientist. 2002;8(5):512–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Hashemi M, Hutt A. A thalamocortical model to explain EEG during anaesthesia. submitted, 2013.Google Scholar
  33. 33.
    Hellwig B. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern. 2000;82:11–121.CrossRefGoogle Scholar
  34. 34.
    Hindriks R, van Putten MJAM. Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms. Neuroimage. 2012;60:2323–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Hutt A. An analytical framework for modeling evoked and event-related potentials. Int J Bifurcat Chaos. 2004;14(2):653–66.CrossRefGoogle Scholar
  36. 36.
    Hutt A. Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delay. Phys Rev E. 2004;70:052902.CrossRefGoogle Scholar
  37. 37.
    Hutt A. Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds. Phys Rev E. 2007;75:026214.CrossRefGoogle Scholar
  38. 38.
    Hutt A. The anaesthetic propofol shifts the frequency of maximum spectral power in EEG during general anaesthesia: analytical insights from a linear model. Front Comp Neurosci. 2013;7:2.Google Scholar
  39. 39.
    Hutt A, Buhry L. Study of gabaergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia. J Comput Neurosci, in press, 2014.Google Scholar
  40. 40.
    Hutt A, Riedel H. Analysis and modeling of quasi-stationary multivariate time series and their application to middle latency auditory evoked potentials. Physica D. 2003;177(1–4):203–32.CrossRefGoogle Scholar
  41. 41.
    Hutt A, Rougier N. Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields. Phys Rev E. 2010;82:R055701.CrossRefGoogle Scholar
  42. 42.
    Hutt A, Zhang L. Distributed nonlocal feedback delays may destabilize fronts in neural fields, distributed transmission delays do not. J Math Neurosci. 2013;3:9.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Hutt A, Bestehorn M, Wennekers T. Pattern formation in intracortical neuronal fields. Netw Comput Neural Syst. 2003;14:351–68.CrossRefGoogle Scholar
  44. 44.
    Hutt A, Sutherland C, Longtin A. Driving neural oscillations with correlated spatial input and topographic feedback. Phys Rev E. 2008;78:021911.CrossRefGoogle Scholar
  45. 45.
    Hutt A, Sleigh J, Steyn-Ross A, Steyn-Ross ML. General anaesthesia. Scholarpedia. 2013;8(8):30485.CrossRefGoogle Scholar
  46. 46.
    Jancke D, Erlhagen W, Dinse HR, Akhavan AC, Giese M, Steinhage A, Schöner G. Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex. J Neurosci. 1999;19(20):9016–28.PubMedGoogle Scholar
  47. 47.
    Jirsa VK, Haken H. Field theory of electromagnetic brain activity. Phys Rev Lett. 1996;77(5):960–3.CrossRefPubMedGoogle Scholar
  48. 48.
    Jirsa VK, Kelso JAS. Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Phys Rev E. 2000;62(6):8462–5.CrossRefGoogle Scholar
  49. 49.
    Kilpatrick ZP, Folias SE, Bressloff PC. Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM J Appl Dyn Syst. 2008;7(1):161–85.CrossRefGoogle Scholar
  50. 50.
    Kitamura A, Marszalec W, Yeh JZ, Narahashi T. Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J Pharmacol. 2002;304(1):162–71.Google Scholar
  51. 51.
    Kosko B. Bidirectional associated memories. IEEE Trans Syst Man Cybern. 1988;18(1):49–60.CrossRefGoogle Scholar
  52. 52.
    Landau LD, Lifshitz EM. Fluid mechanics. Boston: Butterworth-Heinemann; 1987.Google Scholar
  53. 53.
    McCarthy MM, Brown EN, Kopell N. Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation. J Neurosci. 2008;28(50):13488–504.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Murphy M, Bruno M-A, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, Brichant J-F, Phillips C, Massimini M, Laureys S, Tononi G, Boly M. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34(3):283–91.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Nunez PL. Global contributions to EEG dynamics. In: Nunez PL, editor. Neocortical dynamics and human EEG rhythms. New York: Oxford University Press; 1995. p. 475–533.Google Scholar
  56. 56.
    Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL, Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2012;110:E1142–50.CrossRefGoogle Scholar
  57. 57.
    Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature. 2005;435(7045):1102–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Rabinovich MI, Huerta R, Varona P, Afraimovichs VS. Transient cognitive dynamics, metastability, and decision making. PLoS Comput Biol. 2008;4(5):e1000072.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Robinson PA, Rennie CJ, Rowe DL, O’Connor SC. Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp. 2004;23:53–72.CrossRefPubMedGoogle Scholar
  60. 60.
    Rougier N, Vitay J. Emergence of attention within neural population. Neural Netw. 2006;19(5):573–81.CrossRefPubMedGoogle Scholar
  61. 61.
    Roxin A, Brunel N, Hansel D. The role of delays in shaping the spatio-temporal dynamics of neuronal activity in large networks. Phys Rev Lett. 2005;94:238103.CrossRefPubMedGoogle Scholar
  62. 62.
    Roxin A, Brunel N, Hansel D. Rate models with delays and the dynamics of large networks of spiking models. Prog Theor Phys. 2006;161:68–85.CrossRefGoogle Scholar
  63. 63.
    Schmidt H, Hutt A, Schimansky-Geier L. Wave fronts in inhomogeneous neural field models. Physica D. 2009;238(14):1101–12.CrossRefGoogle Scholar
  64. 64.
    Sellers KK, Bennett DV, Hutt A, Frohlich F. Anesthesia differentially modulates spontaneous network dynamics by cortical area and layer. J Neurophysiol. In press, 2013;110(12):2739–51.Google Scholar
  65. 65.
    Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Liley DTJ. Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys Rev E. 1999;60(6):7299–311.CrossRefGoogle Scholar
  66. 66.
    Victor JD, Drover JD, Conte MM, Schiff ND. Mean-field modeling of thalamocortical dynamics and a model-driven approach to EEG analysis. Proc Natl Acad Sci U S A. 2011;118:15631–8.CrossRefGoogle Scholar
  67. 67.
    Vyazovskiy VV, Harris KD. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Na Rev Neurosci. 2013;14:443–51.CrossRefGoogle Scholar
  68. 68.
    Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973;13:55–80.CrossRefPubMedGoogle Scholar
  69. 69.
    Wolf F. Symmetry, multistability, and long-range interactions in brain development. Phys Rev Lett. 2005;95:208701.CrossRefPubMedGoogle Scholar
  70. 70.
    Wright JJ, Liley DTJ. Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behav Brain Sci. 1996;19:285–320.CrossRefGoogle Scholar
  71. 71.
    Yildiz IB, Kiebel SJ. A hierarchical neuronal model for generation and online recognition of birdsongs. PLoS Comput Biol. 2011;7(12):e1002303.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Axel Hutt
    • 1
    • 2
    • 3
    Email author
  • Meysam Hashemi
    • 1
    • 2
    • 3
  • Peter beim Graben
    • 4
  1. 1.INRIA Grand Est—NancyTeam NEUROSYSVillers-lès-NancyFrance
  2. 2.CNRSLoriaVandoeuvre-lès-NancyFrance
  3. 3.Universitè de Lorraine, LoriaVandoeuvre-lès-NancyFrance
  4. 4.Department of German Studies and LinguisticsHumboldt-Universität zu Berlin and Bernstein Center for Computational NeuroscienceBerlinGermany

Personalised recommendations