Towards the Effective Descriptive Set Theory

  • Victor SelivanovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9136)


We prove effective versions of some classical results about measurable functions and derive from this extensions of the Suslin-Kleene theorem, and of the effective Hausdorff theorem for the computable Polish spaces (this was established in [2] with a different proof) and for the computable \(\omega \)-continuous domains (this answers an open question from [2]).


Weakly computable cb\(_0\)-space Computable Polish space Computable \(\omega \)-continuous domain Effective hierarchy Suslin-Kleene theorem Effective Hausdorff theorem 



I thank the anonymous referees for useful comments and bibliographical hints.


  1. 1.
    Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Clarendon Press, Oxford (1994)Google Scholar
  2. 2.
    Becher, V., Grigorieff, S.: Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization. Math. Struct. Comput. Sci. Available on CJO (2014). doi: 10.1017/S096012951300025X
  3. 3.
    Brattka, V.: Effective Borel measurability and reducibility of functions. Math. Logic Q. 51(1), 19–44 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    de Brecht, M.: Quasi-Polish spaces. Ann. Pure Appl. Logic 164, 356–381 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ershov, Y.L.: On a hierarchy of sets 1,2,3 (in Russian). Algebra i Logika 7(4), 15–47 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Gregoriades, V., Kispeter, T., Pauly, A.: A comparison of concepts from computable analysis and effective descriptive set theory. Mathematical structures in computer science (submitted to). Scholar
  7. 7.
    Gregoriades V.: Effective refinements of classical theorems in descriptive set theory (informal presentation). Talks at Conference “Computability and Complexity in Analysis” in Nancy (2013).
  8. 8.
    Gregoriades, V.: Classes of polish spaces under effective Borel isomorphism. Mem. Amer. Math. Soc. (to appear).
  9. 9.
    Grubba, T., Schröder, M., Weihrauch, K.: Computable metrization. Math. Logic Q. 53, 381–395 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hemmerling, A.: The Hausdorff-Ershov hierarchy in Euclidean spaces. Arch. Math. Logic 45, 323–350 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995)zbMATHGoogle Scholar
  12. 12.
    Korovina, M.V., Kudinov, O.V.: Basic principles of \(\varSigma \)-definability and abstract computability. Schriften zur Theoretischen Informatik, Bericht Nr 08–01, Univeversität Siegen (2008)Google Scholar
  13. 13.
    Louveau, A.: Recursivity and compactness. In: Müller, G.H., Scott, D.S. (eds.) Higher Set Theory. Lecture Notes in Mathematics, vol. 669, pp. 303–337. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  14. 14.
    Louveau, A.: A separation theorem for \(\varSigma ^1_1\)-sets. Trans. Amer. Math. Soc. 260(2), 363–378 (1980)MathSciNetGoogle Scholar
  15. 15.
    Moschovakis, Y.N.: Descriptive Set Theory. North Holland, Amsterdam (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Motto Ros, L., Schlicht, P., Selivanov, V.: Wadge-like reducibilities on arbitrary quasi-Polish spaces. Mathematical structures in computer science (to appear). arXiv:1304.1239 [cs.LO]
  17. 17.
    Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  18. 18.
    Selivanov, V.L.: Wadge degrees of \(\omega \)-languages of deterministic Turing machines. Theor. Inf. Appl. 37, 67–83 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Selivanov, V.L.: Variations on the Wadge reducibility. Siberian Adv. Math. 15, 44–80 (2005)MathSciNetGoogle Scholar
  20. 20.
    Selivanov, V.L.: Towards a descriptive set theory for domain-like structures. Theor. Comput. Sci. 365(3), 258–282 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Selivanov, V.L.: On the difference hierarchy in countably based \(T_0\)-spaces. Electron. Notes Theor. Comput. Sci. 221, 257–269 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gao, S.: Invariant Descriptive Set Theory. CRC Press, New York (2009)zbMATHGoogle Scholar
  23. 23.
    Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.A.P. Ershov Institute of Informatics Systems SB RASNovosibirskRussia

Personalised recommendations