Advertisement

Weighted Automata on Infinite Words in the Context of Attacker-Defender Games

  • Vesa Halava
  • Tero Harju
  • Reino Niskanen
  • Igor Potapov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9136)

Abstract

We consider several infinite-state Attacker-Defender games with reachability objectives. The results of the paper are twofold. Firstly we prove a new language-theoretic result for weighted automata on infinite words and show its encoding into the framework of Attacker-Defender games. Secondly we use this novel concept to prove undecidability for checking existence of a winning strategy in several low-dimensional mathematical games including vector reachability games, word games and braid games.

Keywords

Target Position Finite Automaton Winning Strategy Empty Word Matrix Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 1–14. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  2. 2.
    Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arul, A., Reichert, J.: The complexity of robot games on the integer line. In: Proceedings of QAPL 2013, EPTCS, vol. 117, pp. 132–148 (2013)Google Scholar
  5. 5.
    Bell, P.C., Potapov, I.: On the undecidability of the identity correspondence problem and its applications for word and matrix semigroups. Int. J. Found. Comput. Sci. 21(6), 963–978 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bell, P.C., Potapov, I.: On the computational complexity of matrix semigroup problems. Fundam. Inform. 116(1–4), 1–13 (2012)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Birget, J.C., Margolis, S.W.: Two-letter group codes that preserve aperiodicity of inverse finite automata. Semigroup Forum. 76, 159–168 (2008). SpringerzbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bovykin, A., Carlucci, L.: Long games on braids (2006). Preprint. Available online at http://logic.pdmi.ras.ru/~andrey/braids_final3.pdf
  9. 9.
    Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Carlucci, L., Dehornoy, P., Weiermann, A.: Unprovability results involving braids. Proc. Lond. Math. Soc. 102(1), 159–192 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chatterjee, K., Fijalkow, N.: Infinite-state games with finitary conditions. In: Proceedings of CSL 2013, LIPIcs, vol. 23, pp. 181–196 (2013)Google Scholar
  12. 12.
    Collins, G.P.: Computing with quantum knots. Sci. Am. 294(4), 56–63 (2006)CrossRefGoogle Scholar
  13. 13.
    Dehornoy, P., Dynnikov, I., Rolfsen, D., Wiest, B.: Ordering Braids. Mathematical Surveys and Monographs, vol. 148. American Mathematical Society, Providence (2008) zbMATHGoogle Scholar
  14. 14.
    Dong, J., Liu, Q.: Undecidability of infinite post correspondence problem for instances of size 8. RAIRO - Theor. Inf. Appl. 46(3), 451–457 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Doyen, L., Rabinovich, A.: Robot games. Technical report LSV-13-02, LSV, ENS Cachan (2013)Google Scholar
  16. 16.
    Epstein, D., Paterson, M., Cannon, J., Holt, D., Levy, S., Thurston, W.P.: Word Processing in Groups. AK Peters, Ltd, USA (1992)zbMATHGoogle Scholar
  17. 17.
    Garber, D.: Braid group cryptography. In: Braids: Introductory Lectures on Braids, Configurations and Their Applications, vol. 19, pp. 329 (2010)Google Scholar
  18. 18.
    Halava, V., Harju, T.: Undecidability in integer weighted finite automata. Fundam. Inform. 38(1–2), 189–200 (1999)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Halava, V., Harju, T.: Undecidability of infinite post correspondence problem for instances of size 9. ITA 40(4), 551–557 (2006)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Halava, V., Harju, T., Niskanen, R., Potapov, I.: Weighted automata on infinite words in the context of attacker-defender games (2015). CoRR. abs/1411.4796
  21. 21.
    Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theor. Comput. Sci. 348(2–3), 277–293 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Kunc, M.: The power of commuting with finite sets of words. Theory Comput. Syst. 40(4), 521–551 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ly, O., Wu, Z.: On effective construction of the greatest solution of language inequality XA \(\subseteq \) BX. Theor. Comput. Sci. 528, 12–31 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-thue systems with a few rules. Theor. Comput. Sci. 330(1), 145–169 (2005)zbMATHCrossRefGoogle Scholar
  26. 26.
    Panangaden, P., Paquette, É.O.: A categorical presentation of quantum computation with anyons. In: Coecke, B. (ed.) New Structures for Physics. LNP, pp. 983–1025. Springer, Heidelberg (2011) Google Scholar
  27. 27.
    Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 52(4), 264–268 (1946)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Potapov, I.: Composition problems for braids. In: Proceedings of FSTTCS 2003, LIPIcs, vol. 24, pp. 175–187 (2003)Google Scholar
  29. 29.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Bull. Am. Math. Soc. 74(5), 1025–1029 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ruohonen, K.: Reversible machines and post’s correspondence problem for biprefix morphisms. J. of Information Processing and Cybernetics 21(12), 579–595 (1985)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput. 164(2), 234–263 (2001)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vesa Halava
    • 1
    • 2
  • Tero Harju
    • 1
  • Reino Niskanen
    • 2
  • Igor Potapov
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations