Weighted Automata on Infinite Words in the Context of Attacker-Defender Games

  • Vesa Halava
  • Tero Harju
  • Reino Niskanen
  • Igor Potapov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9136)

Abstract

We consider several infinite-state Attacker-Defender games with reachability objectives. The results of the paper are twofold. Firstly we prove a new language-theoretic result for weighted automata on infinite words and show its encoding into the framework of Attacker-Defender games. Secondly we use this novel concept to prove undecidability for checking existence of a winning strategy in several low-dimensional mathematical games including vector reachability games, word games and braid games.

References

  1. 1.
    Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 1–14. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  2. 2.
    Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arul, A., Reichert, J.: The complexity of robot games on the integer line. In: Proceedings of QAPL 2013, EPTCS, vol. 117, pp. 132–148 (2013)Google Scholar
  5. 5.
    Bell, P.C., Potapov, I.: On the undecidability of the identity correspondence problem and its applications for word and matrix semigroups. Int. J. Found. Comput. Sci. 21(6), 963–978 (2010)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bell, P.C., Potapov, I.: On the computational complexity of matrix semigroup problems. Fundam. Inform. 116(1–4), 1–13 (2012)MATHMathSciNetGoogle Scholar
  7. 7.
    Birget, J.C., Margolis, S.W.: Two-letter group codes that preserve aperiodicity of inverse finite automata. Semigroup Forum. 76, 159–168 (2008). SpringerMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bovykin, A., Carlucci, L.: Long games on braids (2006). Preprint. Available online at http://logic.pdmi.ras.ru/~andrey/braids_final3.pdf
  9. 9.
    Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Carlucci, L., Dehornoy, P., Weiermann, A.: Unprovability results involving braids. Proc. Lond. Math. Soc. 102(1), 159–192 (2011)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chatterjee, K., Fijalkow, N.: Infinite-state games with finitary conditions. In: Proceedings of CSL 2013, LIPIcs, vol. 23, pp. 181–196 (2013)Google Scholar
  12. 12.
    Collins, G.P.: Computing with quantum knots. Sci. Am. 294(4), 56–63 (2006)CrossRefGoogle Scholar
  13. 13.
    Dehornoy, P., Dynnikov, I., Rolfsen, D., Wiest, B.: Ordering Braids. Mathematical Surveys and Monographs, vol. 148. American Mathematical Society, Providence (2008) MATHGoogle Scholar
  14. 14.
    Dong, J., Liu, Q.: Undecidability of infinite post correspondence problem for instances of size 8. RAIRO - Theor. Inf. Appl. 46(3), 451–457 (2012)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Doyen, L., Rabinovich, A.: Robot games. Technical report LSV-13-02, LSV, ENS Cachan (2013)Google Scholar
  16. 16.
    Epstein, D., Paterson, M., Cannon, J., Holt, D., Levy, S., Thurston, W.P.: Word Processing in Groups. AK Peters, Ltd, USA (1992)MATHGoogle Scholar
  17. 17.
    Garber, D.: Braid group cryptography. In: Braids: Introductory Lectures on Braids, Configurations and Their Applications, vol. 19, pp. 329 (2010)Google Scholar
  18. 18.
    Halava, V., Harju, T.: Undecidability in integer weighted finite automata. Fundam. Inform. 38(1–2), 189–200 (1999)MATHMathSciNetGoogle Scholar
  19. 19.
    Halava, V., Harju, T.: Undecidability of infinite post correspondence problem for instances of size 9. ITA 40(4), 551–557 (2006)MATHMathSciNetGoogle Scholar
  20. 20.
    Halava, V., Harju, T., Niskanen, R., Potapov, I.: Weighted automata on infinite words in the context of attacker-defender games (2015). CoRR. abs/1411.4796
  21. 21.
    Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theor. Comput. Sci. 348(2–3), 277–293 (2005)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Kunc, M.: The power of commuting with finite sets of words. Theory Comput. Syst. 40(4), 521–551 (2007)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ly, O., Wu, Z.: On effective construction of the greatest solution of language inequality XA \(\subseteq \) BX. Theor. Comput. Sci. 528, 12–31 (2014)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-thue systems with a few rules. Theor. Comput. Sci. 330(1), 145–169 (2005)MATHCrossRefGoogle Scholar
  26. 26.
    Panangaden, P., Paquette, É.O.: A categorical presentation of quantum computation with anyons. In: Coecke, B. (ed.) New Structures for Physics. LNP, pp. 983–1025. Springer, Heidelberg (2011) Google Scholar
  27. 27.
    Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 52(4), 264–268 (1946)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Potapov, I.: Composition problems for braids. In: Proceedings of FSTTCS 2003, LIPIcs, vol. 24, pp. 175–187 (2003)Google Scholar
  29. 29.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Bull. Am. Math. Soc. 74(5), 1025–1029 (1968)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ruohonen, K.: Reversible machines and post’s correspondence problem for biprefix morphisms. J. of Information Processing and Cybernetics 21(12), 579–595 (1985)MATHMathSciNetGoogle Scholar
  31. 31.
    Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput. 164(2), 234–263 (2001)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vesa Halava
    • 1
    • 2
  • Tero Harju
    • 1
  • Reino Niskanen
    • 2
  • Igor Potapov
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations