Advertisement

Randomness and Differentiability of Convex Functions

  • Alex Galicki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9136)

Abstract

We study first and second derivatives of computable convex functions on \(\mathbb {R}^n\). The main result of the paper is an effective form of Aleksandrov’s Theorem: we show that computable randomness implies twice-differentiability of computable convex functions.

References

  1. 1.
    Alberti, G., Ambrosio, L.: A geometrical approach to monotone functions in \(\mathbb{R}^n\). Math. Z. 230, 259–316 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aleksandrov, A.D.: Leningrad Univ. Ann. (Math. Ser.) 6, 3–35 (1939)Google Scholar
  3. 3.
    Brattka, V., Miller, J., Nies, A.: Randomness and differentiability. Trans. AMS (forthcoming). http://arxiv.org/abs/1104.4465
  4. 4.
    Dingzhu, D., Ko, K.: Computational complexity of integration and differentiation of convex functions. Syst. Sci. Math. Sci. 2(1), 70–79 (1989)zbMATHGoogle Scholar
  5. 5.
    Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer, Berlin (2010)zbMATHCrossRefGoogle Scholar
  6. 6.
    Freer, C., Kjos-Hanssen, B., Nies, A., Stephan, F.: Algorithmic aspects of lipschitz functions. Computability 3(1), 45–61 (2014)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Galicki, A., Turetsky, D.: Differentiability and randomness in higher dimensions (2014, Submitted)Google Scholar
  8. 8.
    Minty, G.: Monotone nonlinear operators on a Hilbert space. Duke Math J. 29, 341–346 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Nies, A.: Computability and Randomness. Oxford Logic Guides. Oxford University Press, Oxford (2009)zbMATHCrossRefGoogle Scholar
  10. 10.
    Pour-El, M.B., Richards, I.: Computability in Analysis and Physics. Springer, Berlin (1988)Google Scholar
  11. 11.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Rute. J.: Computable randomness and betting for computable probability spaces (2012, Submitted)Google Scholar
  13. 13.
    Siksek, S., El Sedy, E.: Points of non-differentiability of convex functions. Appl. Math. Comput. 148, 725–728 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Zhong, N.: Derivatives of computable functions. Math. Log. Q. 44, 304–316 (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations