Advertisement

Prime Model with No Degree of Autostability Relative to Strong Constructivizations

  • Nikolay Bazhenov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9136)

Abstract

We build a decidable structure \(\mathcal {M}\) such that \(\mathcal {M}\) is a prime model of the theory \(Th(\mathcal {M})\) and \(\mathcal {M}\) has no degree of autostability relative to strong constructivizations.

Keywords

Autostability Decidable structure Prime model Autostability spectrum Autostability relative to strong constructivizations Degree of categoricity Categoricity spectrum Decidable categoricity 

Notes

Acknowledgements

The author is grateful to Sergey Goncharov and Svetlana Aleksandrova for fruitful discussions on the subject. This work was supported by RFBR (grant 14-01-00376), and by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-860.2014.1).

References

  1. 1.
    Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. Roy. Soc. London. Ser. A. 248, 407–432 (1956)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Mal’tsev, A.I.: Constructive algebras. I. Russ. Math. Surv. 16, 77–129 (1961)zbMATHCrossRefGoogle Scholar
  3. 3.
    Mal’tsev, A.I.: On recursive abelian groups. Sov. Math. Dokl. 32, 1431–1434 (1962)zbMATHGoogle Scholar
  4. 4.
    Fokina, E.B., Kalimullin, I., Miller, R.: Degrees of categoricity of computable structures. Arch. Math. Logic. 49, 51–67 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Csima, B.F., Franklin, J.N.Y., Shore, R.A.: Degrees of categoricity and the hyperarithmetic hierarchy. Notre Dame J. Formal Logic. 54, 215–231 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bazhenov, N.A.: Degrees of categoricity for superatomic Boolean algebras. Algebra Logic. 52, 179–187 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Anderson, B.A., Csima, B.F.: Degrees that are not degrees of categoricity. Notre Dame J. Formal Logic. (to appear)Google Scholar
  8. 8.
    Fokina, E., Frolov, A., Kalimullin, I.: Categoricity spectra for rigid structures. Notre Dame J. Formal Logic. (to appear)Google Scholar
  9. 9.
    Goncharov, S.S.: Degrees of autostability relative to strong constructivizations. Proc. Steklov Inst. Math. 274, 105–115 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Miller, R.: \(\mathbf{d}\)-computable categoricity for algebraic fields. J. Symb. Log. 74, 1325–1351 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Fokina, E.B., Harizanov, V., Melnikov, A.: Computable model theory. In: Downey, R. (ed.) Turing’s Legacy: Developments from Turing Ideas in Logic. Lecture Notes Logic, vol. 42, pp. 124–194. Cambridge University Press, Cambridge (2014)Google Scholar
  12. 12.
    Bazhenov, N.A.: Autostability spectra for Boolean algebras. Algebra Logic. 53, 502–505 (2014)CrossRefGoogle Scholar
  13. 13.
    Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  14. 14.
    Jockusch, C.G., Soare, R.I.: \(\Pi ^0_1\) classes and degrees of theories. Trans. Amer. Math. Soc. 173, 33–56 (1972)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Cenzer, D.: \(\Pi ^0_1\) classes in computability theory. In: Griffor, E.R. (ed.) Handbook of Computability Theory. Studies Logic Foundations Mathematics, vol. 140, pp. 37–85. Elsevier Science B.V., Amsterdam (1999)Google Scholar
  16. 16.
    Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Science B.V, Amsterdam (2000)zbMATHGoogle Scholar
  17. 17.
    Ershov, Y.L., Goncharov, S.S.: Constructive Models. Kluwer Academic/Plenum Publishers, New York (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Goncharov, S.S.: Countable Boolean Algebras and Decidability. Consultants Bureau, New York (1997)zbMATHGoogle Scholar
  19. 19.
    Ershov, Y.L.: Decidability of the elementary theory of distributive lattices with relative complements and the theory of filters. Algebra Logic. 3, 17–38 (1964)zbMATHGoogle Scholar
  20. 20.
    Steiner, R.M.: Effective algebraicity. Arch. Math. Logic. 52, 91–112 (2013)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations