Advertisement

Universality in Molecular and Cellular Computing

  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9136)

Abstract

In this article we present an overview of the study of the universality problem in the area of molecular and cellular computing. We consider the results that deal explicitly with this problem and that aim to optimize the obtained construction. A particular attention is given to models based on the splicing operation as well as to multiset-rewriting based models.

Keywords

Cellular Automaton Turing Machine Boolean Network Register Machine Universal Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alhazov, A., Kogler, M., Margenstern, M., Rogozhin, Y., Verlan, S.: Small universal TVDH and test tube systems. Int. J. Found. Comput. Sci. 22(1), 143–154 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Martín-Vide, C., Truthe, B., Dassow, J., Rogozhin, Y.: On networks of evolutionary processors with nodes of two types. Fundamenta Informaticae 91(1), 1–15 (2009)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Alhazov, A., Rogozhin, Y., Verlan, S.: On small universal splicing systems. Int. J. Found. Comput. Sci. 23(07), 1423–1438 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Alhazov, A., Verlan, S.: Minimization strategies for maximally parallel multiset rewriting systems. Theor. Comput. Sci. 412(17), 1581–1591 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Barzdin, I.M.: On a class of turing machines (Minsky machines). Algebra i Logika 1, 42–51 (1963). (in Russian)MathSciNetGoogle Scholar
  6. 6.
    Bonnet, R.: The reachability problem for vector addition system with one zero-test. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 145–157. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-complete problems with networks of evolutionary processors. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  8. 8.
    Csuhaj-Varjú, E., Kari, L., Păun, G.: Test tube distributed systems based on splicing. Comput. Artif. Intell. 15(2–3), 211–232 (1996)zbMATHGoogle Scholar
  9. 9.
    Dassow, J., Manea, F.: Accepting hybrid networks of evolutionary processors with special topologies and small communication. In: Proceedings of DCFS 2010, of EPTCS, vol. 31, pp. 68–77 (2010)Google Scholar
  10. 10.
    Dassow, J., Manea, F., Truthe, B.: On the power of accepting networks of evolutionary processors with special topologies and random context filters. Fundamenta Informaticae 136(1–2), 1–35 (2015)MathSciNetGoogle Scholar
  11. 11.
    Dassow, J., Mitrana, V.: Accepting networks of non-inserting evolutionary processors. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 187–199. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  12. 12.
    Demaine, E.D., Demaine, M.L., Fekete, S.P., Patitz, M.J., Schweller, R.T., Winslow, A., Woods, D.: One tile to rule them all: simulating any tile assembly system with a single universal tile. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 368–379. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, pp. 302–310 (2012)Google Scholar
  14. 14.
    Freund, R., Oswald, M.: A small universal antiport P system with forbidden context. In: Leung, H., Pighizzini, G. (eds.) 8th International Workshop on Descriptional Complexity of Formal Systems, pp. 259–266. Proceedings, New Mexico (2006) Google Scholar
  15. 15.
    Freund, R., Verlan, S.: A formal framework for static (Tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  16. 16.
    Frisco, P.: Direct constructions of universal extended H systems. Theor. Comput. Sci. 296(2), 269–293 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Frisco, P., Hoogeboom, H.J., Sant, P.: A direct construction of a universal P system. Fundamenta Informaticae 49(1–3), 103–122 (2002)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biol. 49(6), 737–759 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Head, T.: Splicing languages generated with one sided context. In: Paun, G. (ed.) Computing with Bio-Molecules. Theory and Experiments, pp. 158–181. Springer, Singapore (1998) Google Scholar
  20. 20.
    Hopcroft, J., Pansiot, J.-J.: On the reachability problem for 5-dimensional vector addition systems. Theor. Comput. Sci. 8(2), 135–159 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ivanov, S., Pelz, E., Verlan, S.: Small universal Petri nets with inhibitor arcs (2013). arXiv, CoRR. abs/1312.4414
  22. 22.
    Ivanov, S., Pelz, E., Verlan, S.: Small universal non-deterministic Petri nets with inhibitor arcs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 186–197. Springer, Heidelberg (2014) Google Scholar
  23. 23.
    Ivanov, S., Rogozhin, Y., Verlan, S.: Small universal networks of evolutionary processors. J. Autom. Lang. Comb. 19(1—-4), 133–144 (2014)Google Scholar
  24. 24.
    Kari, L.: DNA computing: arrival of biological mathematics. Math. Intell. 19(2), 9–22 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Kim, J., White, K.S., Winfree, E.: Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006)CrossRefGoogle Scholar
  26. 26.
    Korec, I.: Small universal register machines. Theor. Comput. Sci. 168(2), 267–301 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion systems with one-sided contexts. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  28. 28.
    Lathrop, J.I., Lutz, J.H., Patitz, M.J., Summers, S.M.: Computability and complexity in self-assembly. Theory Comput. Syst. 48(3), 617–647 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Loos, R., Manea, F., Mitrana, V.: On small, reduced, and fast universal accepting networks of splicing processors. Theor. Comp. Sci. 410(45), 406–416 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Malcev, A.I.: Algorithms and Recursive Functions. Wolters-Noordhoff, Groningen (1970) Google Scholar
  31. 31.
    Manea, F., Martín-Vide, C., Mitrana, V.: On the size complexity of universal accepting hybrid networks of evolutionary processors. Math. Struct. Comput. Sci. 8, 17:753–771 (2007)Google Scholar
  32. 32.
    Manea, F., Martín-Vide, C., Mitrana, V.: Accepting Networks of Evolutionary Word and Picture Processors: A Survey, pp. 525–561. Imperial College Press, London (2010). Chap. 10 Google Scholar
  33. 33.
    Margenstern, M.: Frontier between decidability and undecidability: a survey. Theor. Comput. Sci. 231(2), 217–251 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Margenstern, M., Rogozhin, Y.: Time-varying distributed H systems of degree 1 generate all recursively enumerable languages. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semigroups, and Transductions, pp. 329–339. World Scientific, Singapore (2001) CrossRefGoogle Scholar
  35. 35.
    Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying distributed H systems with parallel computations: the problem is solved. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 48–53. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  36. 36.
    Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 205–217. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  37. 37.
    Minsky, M.: Size and structure of universal Turing machines using tag systems. In: Recursive Function Theory: Proceedings, Symposium in Pure Mathematics, vo. 5, pp. 229–238. Provelence (1962)Google Scholar
  38. 38.
    Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, USA (1967) Google Scholar
  39. 39.
    Neary, T., Woods, D.: The complexity of small universal turing machines: a survey. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  40. 40.
    Ollinger, N.: Automates cellulaires: structures. Ph.D. thesis, ENS Lyon (2002)Google Scholar
  41. 41.
    Ollinger, N.: The quest for small universal cellular automata. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 318–329. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  42. 42.
    Patil, S.S.: Coordination of asynchronous events. Ph.D. thesis, MIT (1970)Google Scholar
  43. 43.
    Patitz, M.J., Summers, S.M.: Self-assembly of decidable sets. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) UC 2008. LNCS, vol. 5204, pp. 206–219. Springer, Heidelberg (2008) Google Scholar
  44. 44.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 1(61), 108–143 (2000). Also TUCS Report No. 208, 1998CrossRefGoogle Scholar
  45. 45.
    Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  46. 46.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Heidelberg (1998) zbMATHCrossRefGoogle Scholar
  47. 47.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook Of Membrane Computing. Oxford University Press, New York (2009) Google Scholar
  48. 48.
    Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  49. 49.
    Rogozhin, Y.: Small universal turing machines. Theor. Comput. Sci. 168(2), 215–240 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing. Springer, Heidelberg (2012) zbMATHGoogle Scholar
  51. 51.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, Heidelberg (1997) zbMATHCrossRefGoogle Scholar
  52. 52.
    Schroeppel, R.: A two counter machine cannot calculate 2N. AI Memos, Cambridge (1972) Google Scholar
  53. 53.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  54. 54.
    Shannon, C.E.: A universal Turing machine with two internal states. Autom. Stud. Ann. Math. Stud. 34, 157–165 (1956)MathSciNetGoogle Scholar
  55. 55.
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36(6), 1544–1569 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42(2), 230–265 (1936)MathSciNetGoogle Scholar
  57. 57.
    Verlan, S.: Study of language-theoretic computational paradigms inspired by biology. Habilitation thesis, Université Paris Est (2010)Google Scholar
  58. 58.
    von Neumann, J.: Theory of self-reproducing automata. University of Illinois (1966)Google Scholar
  59. 59.
    Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal turing machines. J. ACM 8(4), 476–483 (1961)zbMATHCrossRefGoogle Scholar
  60. 60.
    Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, Caltech (1998)Google Scholar
  61. 61.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc., UK (2002) zbMATHGoogle Scholar
  62. 62.
    Zizza, R.: Splicing systems. Scholarpedia 5(7), 9397 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire d’Algorithmique, Complexité et LogiqueUniversité Paris Est – Créteil Val de MarneCréteilFrance
  2. 2.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChisinauMoldova

Personalised recommendations