Advertisement

Construction of An Unbiased Spatio-Temporal Atlas of the Tongue During Speech

  • Jonghye Woo
  • Fangxu Xing
  • Junghoon Lee
  • Maureen Stone
  • Jerry L. Prince
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9123)

Abstract

Quantitative characterization and comparison of tongue motion during speech and swallowing present fundamental challenges because of striking variations in tongue structure and motion across subjects. A reliable and objective description of the dynamics tongue motion requires the consistent integration of inter-subject variability to detect the subtle changes in populations. To this end, in this work, we present an approach to constructing an unbiased spatio-temporal atlas of the tongue during speech for the first time, based on cine-MRI from twenty two normal subjects. First, we create a common spatial space using images from the reference time frame, a neutral position, in which the unbiased spatio-temporal atlas can be created. Second, we transport images from all time frames of all subjects into this common space via the single transformation. Third, we construct atlases for each time frame via groupwise diffeomorphic registration, which serves as the initial spatio-temporal atlas. Fourth, we update the spatio-temporal atlas by realigning each time sequence based on the Lipschitz norm on diffeomorphisms between each subject and the initial atlas. We evaluate and compare different configurations such as similarity measures to build the atlas. Our proposed method permits to accurately and objectively explain the main pattern of tongue surface motion.

Keywords

Spatio-temporal atlas MRI Speech Motion 

Notes

Acknowledgements

We thank reviewers for their comments. This work is supported by NIH/NIDCD R00DC012575.

References

  1. 1.
    Harandia, N.M., Abugharbieh, R., Fels, S.: 3D segmentation of the tongue in MRI: a minimally interactive model-based approach. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, pp. 1–11 (2014)Google Scholar
  2. 2.
    Lee, J., Woo, J., Xing, F., Murano, E., Stone, M., Prince, J.: Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI. Comput. Med. Imaging Graph. 38(8), 714–724 (2014)CrossRefGoogle Scholar
  3. 3.
    Parthasarathy, V., Prince, J.L., Stone, M., Murano, E.Z., NessAiver, M.: Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing. J. Acoust. Soc. Am. 121(1), 491–504 (2007)CrossRefGoogle Scholar
  4. 4.
    Woo, J., Xing, F., Lee, J., Stone, M., Prince, J.: Determining functional units of tongue motion via graph-regularized sparse non-negative matrix factorization. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 146–153, Boston, MA (2014)Google Scholar
  5. 5.
    Woo, J., Stone, M., Prince, J.: Multimodal registration via mutual information incorporating geometric and spatial context. IEEE Trans. Image Process. 24(2), 757–769 (2015)CrossRefGoogle Scholar
  6. 6.
    Kim, J., Lammert, A., Ghosh, P., Narayanan, S.: Co-registration of speech production datasets from electromagnetic articulography and real-time magnetic resonance imaging. J. Acoust. Soc. Am. 135(2), EL115–EL121 (2014)CrossRefGoogle Scholar
  7. 7.
    Avants, B.B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., Gee, J.: The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49(3), 2457–2466 (2010)CrossRefGoogle Scholar
  8. 8.
    Serag, A., Aljabar, P., Ball, G., Counsell, S., Boardman, J., Rutherford, M., Edwards, A., Hajnal, J., Rueckert, D.: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage 59, 2255–2265 (2012)CrossRefGoogle Scholar
  9. 9.
    De Craene, M., Piella, G., Camara, O., Duchateau, N., Silva, E., Doltra, A., D’hooge, J., Brugada, J., Sitges, M., Frangi, A.: Temporal diffeomorphic free-form deformation: application to motion and strain estimation from 3D echocardiography. Med. Image Anal 16(2), 427–450 (2011)CrossRefGoogle Scholar
  10. 10.
    Woo, J., Lee, J., Murano, E., Xing, F., Meena, A., Stone, M., Prince, J.: A high-resolution atlas and statistical model of the vocal tract from structural MRI. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, pp. 1–14 (2014)Google Scholar
  11. 11.
    Gholipour, A., Limperopoulos, C., Clancy, S., Clouchoux, C., Akhondi-Asl, A., Estroff, J.A., Warfield, S.K.: Construction of a deformable spatiotemporal MRI atlas of the fetal brain: evaluation of similarity metrics and deformation models. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 292–299, Boston, MA (2014)Google Scholar
  12. 12.
    Liao, S., Jia, H., Wu, G., Shen, D.: A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences. NeuroImage 59(2), 1275–1289 (2012)CrossRefGoogle Scholar
  13. 13.
    Durrleman, S., Pennec, X., Gerig, G., Trouve, A., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: International Conference on Medical Image Computing and Computer-Assisted Intervention 59(2), pp. 297–304 (2009)Google Scholar
  14. 14.
    Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. Inf Process Med Imaging 22, 463–474 (2011)Google Scholar
  15. 15.
    Woo, J., Murano, E., Stone, M., Prince, J.: Reconstruction of high-resolution tongue volumes from MRI. IEEE Trans Biomed. Eng. 59(12), 3511–3524 (2012)CrossRefGoogle Scholar
  16. 16.
    Beg, M.F., Miller, M.I., Trouv, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139157 (2005)CrossRefGoogle Scholar
  17. 17.
    Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3), 2033–2044 (2011)CrossRefGoogle Scholar
  18. 18.
    Tustison, N., Avants, B.B.: Explicit B-spline regularization in diffeomorphic image registration. Frontiers in Neuroinformatics 7(39), 1–13 (2013)Google Scholar
  19. 19.
    Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1872–1886 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jonghye Woo
    • 1
  • Fangxu Xing
    • 2
  • Junghoon Lee
    • 2
    • 3
  • Maureen Stone
    • 4
  • Jerry L. Prince
    • 2
  1. 1.Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Radiation Oncology and Molecular Radiation SciencesJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Neural and Pain ScienceUniversity of MarylandBaltimoreUSA

Personalised recommendations