Tractography-Driven Groupwise Multi-scale Parcellation of the Cortex

  • Sarah Parisot
  • Salim Arslan
  • Jonathan Passerat-Palmbach
  • William M. WellsIII
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9123)


The analysis of the connectome of the human brain provides key insight into the brain’s organisation and function, and its evolution in disease or ageing. Parcellation of the cortical surface into distinct regions in terms of structural connectivity is an essential step that can enable such analysis. The estimation of a stable connectome across a population of healthy subjects requires the estimation of a groupwise parcellation that can capture the variability of the connectome across the population. This problem has solely been addressed in the literature via averaging of connectivity profiles or finding correspondences between individual parcellations a posteriori. In this paper, we propose a groupwise parcellation method of the cortex based on diffusion MR images (dMRI). We borrow ideas from the area of cosegmentation in computer vision and directly estimate a consistent parcellation across different subjects and scales through a spectral clustering approach. The parcellation is driven by the tractography connectivity profiles, and information between subjects and across scales. Promising qualitative and quantitative results on a sizeable data-set demonstrate the strong potential of the method.


Spectral Cluster Geodesic Distance Cortical Surface Structural Connectivity Kullback Leibler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to these results has received funding from NIH grant P41EB015902 and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement no. 319456. Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.


  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. 34, 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Anwander, A., Tittgemeyer, M., von Cramon, D.Y., Friederici, A.D., Knösche, T.R.: Connectivity-based parcellation of Broca’s area. Cereb. Cortex 17(4), 816–825 (2007)CrossRefGoogle Scholar
  3. 3.
    Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34(1), 144–155 (2007)CrossRefGoogle Scholar
  4. 4.
    Blumensath, T., Jbabdi, S., Glasser, M.F., Van Essen, D.C., Ugurbil, K., Behrens, T.E., Smith, S.M.: Spatially constrained hierarchical parcellation of the brain with resting-state fmri. NeuroImage 76, 313–324 (2013)CrossRefGoogle Scholar
  5. 5.
    Clarkson, M.J., Malone, I.B., Modat, M., Leung, K.K., Ryan, N., Alexander, D.C., Fox, N.C., Ourselin, S.: A framework for using diffusion weighted imaging to improve cortical parcellation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 534–541. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Cour, T., Bnzit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: CVPR (2), pp. 1124–1131. IEEE Computer Society (2005)Google Scholar
  7. 7.
    Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fmri atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012)CrossRefGoogle Scholar
  8. 8.
    Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53(1), 1–15 (2010)CrossRefGoogle Scholar
  9. 9.
    Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Essen, D.C.V., Jenkinson, M.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013)CrossRefGoogle Scholar
  10. 10.
    Jbabdi, S., Woolrich, M.W., Behrens, T.E.: Multiple-subjects connectivity-based parcellation using hierarchical dirichlet process mixture models. NeuroImage 44, 373–384 (2009)CrossRefGoogle Scholar
  11. 11.
    Jbabdi, S., Sotiropoulos, S.N., Savio, A.M., Graa, M., Behrens, T.E.J.: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn. Reson. Med. 68(6), 1846–1855 (2012)CrossRefGoogle Scholar
  12. 12.
    Kim, E., Li, H., Huang, X.: A hierarchical image clustering cosegmentation framework. In: CVPR, pp. 686–693. IEEE (2012)Google Scholar
  13. 13.
    Moreno-Dominguez, D., Anwander, A., Knösche, T.R.: A hierarchical method for whole-brain connectivity-based parcellation. Hum. Brain Mapp. 35, 5000–5025 (2014)CrossRefGoogle Scholar
  14. 14.
    Peyré, G., Cohen, L.D.: Surface segmentation using geodesic centroidal tesselation. In: 3DPVT, pp. 995–1002. IEEE Computer Society (2004)Google Scholar
  15. 15.
    Roca, P., Rivière, D., Guevara, P., Poupon, C., Mangin, J.-F.: Tractography-based parcellation of the cortex using a spatially-informed dimension reduction of the connectivity matrix. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 935–942. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  16. 16.
    Roca, P., Tucholka, A., Rivière, D., Guevara, P., Poupon, C., Mangin, J.-F.: Inter-subject connectivity-based parcellation of a patch of cerebral cortex. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 347–354. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Sporns, O.: The human connectome: a complex network. Ann. NY Acad. Sci. 1224, 109–125 (2011)CrossRefGoogle Scholar
  18. 18.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. NeuroImage 15(1), 273–289 (2002)CrossRefGoogle Scholar
  19. 19.
    Yu, S.X., Shi, J.: Multiclass spectral clustering. In: ICCV (2). IEEE (2003)Google Scholar
  20. 20.
    Yu, S.X., Shi, J.: Segmentation given partial grouping constraints. IEEE Trans. Pattern Anal. 26(2), 173–183 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sarah Parisot
    • 1
  • Salim Arslan
    • 1
  • Jonathan Passerat-Palmbach
    • 1
  • William M. WellsIII
    • 2
  • Daniel Rueckert
    • 1
  1. 1.Biomedical Image Analysis Group, Department of ComputingImperial College LondonLondonUK
  2. 2.Surgical Planning LaboratoryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations