Multi-scale Convolutional Neural Networks for Lung Nodule Classification

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9123)

Abstract

We investigate the problem of diagnostic lung nodule classification using thoracic Computed Tomography (CT) screening. Unlike traditional studies primarily relying on nodule segmentation for regional analysis, we tackle a more challenging problem on directly modelling raw nodule patches without any prior definition of nodule morphology. We propose a hierarchical learning framework—Multi-scale Convolutional Neural Networks (MCNN)—to capture nodule heterogeneity by extracting discriminative features from alternatingly stacked layers. In particular, to sufficiently quantify nodule characteristics, our framework utilizes multi-scale nodule patches to learn a set of class-specific features simultaneously by concatenating response neuron activations obtained at the last layer from each input scale. We evaluate the proposed method on CT images from Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), where both lung nodule screening and nodule annotations are provided. Experimental results demonstrate the effectiveness of our method on classifying malignant and benign nodules without nodule segmentation.

Keywords

Lung nodule classification Computed Tomography (CT) Imaging Convolutional Neural Networks Computer-Aided Diagnoses (CAD) 

References

  1. 1.
    Aberle, D.R., Adams, A.M., Berg, C.D., Black, W.C., Clapp, J.D., Fagerstrom, R.M., Gareen, I.F., Gatsonis, C., Marcus, P.M., Sicks, J.: Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365(5), 395–409 (2011)CrossRefGoogle Scholar
  2. 2.
    Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Haibe-Kains, D., Rietveld, D., Hoebers, F., Rietbergen, M.M., Leemans, C.R., Dekker, A., Quackenbush, J., Gillies, R.J., Lambin, P.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, Article No. 4006 (2014). doi:10.1038/ncomms5006
  3. 3.
    Armato III, S.G., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. phys. 38(2), 915–931 (2011)CrossRefGoogle Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893 (2005)Google Scholar
  5. 5.
    El-Baz, A., Nitzken, M., Khalifa, F., Elnakib, A., Gimel’farb, G., Falk, R., El-Ghar, M.A.: 3D shape analysis for early diagnosis of malignant lung nodules. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 772–783. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  6. 6.
    Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)CrossRefGoogle Scholar
  7. 7.
    Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, 1735–1742 (2006)Google Scholar
  8. 8.
    Han, F., Zhang, G., Wang, H., Song, B., Lu, H., Zhao, D., Zhao, H., Liang, Z.: A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database. In: IEEE International Conference on Medical Imaging Physics and Engineering, pp. 14–18 (2013)Google Scholar
  9. 9.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding (2014). arXiv preprint arXiv:1408.5093
  10. 10.
    Jolliffe, I.: Principal Component Analysis. Wiley Online Library, Chichester (2005)CrossRefGoogle Scholar
  11. 11.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  12. 12.
    Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets (2014). arXiv preprint arXiv:1409.5185
  13. 13.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  14. 14.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MATHMathSciNetGoogle Scholar
  15. 15.
    Prasanna, P., Tiwari, P., Madabhushi, A.: Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): distinguishing tumor confounders and molecular subtypes on MRI. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III. LNCS, vol. 8675, pp. 73–80. Springer, Heidelberg (2014) Google Scholar
  16. 16.
    Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014) Google Scholar
  17. 17.
    Suzuki, K., Li, F., Sone, S., Doi, K.: Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose ct by use of massive training artificial neural network. IEEE Trans. Med. Imaging 24(9), 1138–1150 (2005)CrossRefGoogle Scholar
  18. 18.
    van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: Scikit-image: Image processing in python. Technical report, PeerJ PrePrints (2014)Google Scholar
  19. 19.
    Way, T.W., Hadjiiski, L.M., Sahiner, B., Chan, H.P., Cascade, P.N., Kazerooni, E.A., Bogot, N., Zhou, C.: Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Med. Phys. 33(7), 2323–2337 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Key Laboratory of Molecular Imaging of Chinese Academy of SciencesInstitute of Automation, Chinese Academy of SciencesBeijingChina
  2. 2.School of Computer and Information TechnologyBeijing Jiaotong UniversityBeijingChina
  3. 3.Department of Computer Science and EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations