Advertisement

Self-Aligning Manifolds for Matching Disparate Medical Image Datasets

  • Christian F. Baumgartner
  • Alberto Gomez
  • Lisa M. Koch
  • James R. Housden
  • Christoph Kolbitsch
  • Jamie R. McClelland
  • Daniel Rueckert
  • Andy P. King
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9123)

Abstract

Manifold alignment can be used to reduce the dimensionality of multiple medical image datasets into a single globally consistent low-dimensional space. This may be desirable in a wide variety of problems, from fusion of different imaging modalities for Alzheimer’s disease classification to 4DMR reconstruction from 2D MR slices. Unfortunately, most existing manifold alignment techniques require either a set of prior correspondences or comparability between the datasets in high-dimensional space, which is often not possible. We propose a novel technique for the ‘self-alignment’ of manifolds (SAM) from multiple dissimilar imaging datasets without prior correspondences or inter-dataset image comparisons. We quantitatively evaluate the method on 4DMR reconstruction from realistic, synthetic sagittal 2D MR slices from 6 volunteers and real data from 4 volunteers. Additionally, we demonstrate the technique for the compounding of two free breathing 3D ultrasound views from one volunteer. The proposed method performs significantly better for 4DMR reconstruction than state-of-the-art image-based techniques.

Keywords

Free Breathing Locally Linear Embedding Slice Position Similarity Kernel Magnetic Resonance Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by EPSRC programme grant EP/H046410/1. This research was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy’s and St. Thomas’ NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

References

  1. 1.
    Baumgartner, C.F., Kolbitsch, C., Balfour, D.R., Marsden, P.K., McClelland, J.R., Rueckert, D., King, A.P.: High-resolution dynamic MR imaging of the thorax for respiratory motion correction of PET using groupwise manifold alignment. Med. Image Anal. 18(7), 939–952 (2014)CrossRefGoogle Scholar
  2. 2.
    Dikaios, N., Izquierdo-Garcia, D., Graves, M.J., Mani, V., Fayad, Z.A., Fryer, T.D.: MRI-based motion correction of thoracic PET: initial comparison of acquisition protocols and correction strategies suitable for simultaneous PET/MRI systems. Eur. Radiol. 22(2), 439–446 (2012)CrossRefGoogle Scholar
  3. 3.
    Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using random walks. IEEE T. Pattern Anal. 27(7), 1100–1111 (2005)CrossRefGoogle Scholar
  4. 4.
    Grau, V., Becher, H., Noble, J.A.: Registration of multiview real-time 3-D echocardiographic sequences. IEEE T. Med. Imaging 26(9), 1154–1165 (2007)CrossRefGoogle Scholar
  5. 5.
    Guerrero, R., Ledig, C., Rueckert, D.: Manifold alignment and transfer learning for classification of Alzheimer’s disease. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 77–84. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    King, A.P., Buerger, C., Tsoumpas, C., Marsden, P.K., Schaeffter, T.: Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med. Image Anal. 16(1), 252–264 (2012)CrossRefGoogle Scholar
  7. 7.
    Lombaert, H., Grady, L., Polimeni, J.R., Cheriet, F.: Fast brain matching with spectral correspondence. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 660–673. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  9. 9.
    Modat, M., Ridgway, G.R., Zeike, A.T., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Meth. Prog. Bio. 98(3), 278–284 (2010)CrossRefGoogle Scholar
  10. 10.
    McClelland, J.R., Hawkes, D.J., Schaeffter, T., King, A.P.: Respiratory motion models: a review. Med. Image Anal. 17(1), 19–42 (2013)CrossRefGoogle Scholar
  11. 11.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  12. 12.
    Thielemans, K., Rathore, S., Engbrant, F., Razifar, P.: Device-less gating for PET/CT using PCA. In: Proceedings of the IEEE NSS/MIC, pp. 3904–3910. IEEE (2011)Google Scholar
  13. 13.
    von Siebenthal, M., Székely, G., Lomax, A.J., Cattin, P.C.: Systematic errors in respiratory gating due to intrafraction deformations of the liver. Med. Phys. 34, 3620–3629 (2007)CrossRefGoogle Scholar
  14. 14.
    Wachinger, C., Yigitsoy, M., Rijkhorst, E., Navab, N.: Manifold learning for image-based breathing gating in ultrasound and MRI. Med. Image Anal. 16(4), 806–818 (2011)CrossRefGoogle Scholar
  15. 15.
    Wang, C., Mahadevan, S.: Manifold alignment without correspondence. In: Proceedings of the IJCAI, pp. 1273–1278 (2009)Google Scholar
  16. 16.
    Yao, C., Simpson, J., Schaeffter, T., Penney, G.: Multi-view 3D echocardiography compounding based on feature consistency. Phys. Med. Biol. 56(18), 6109 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian F. Baumgartner
    • 1
  • Alberto Gomez
    • 1
  • Lisa M. Koch
    • 2
  • James R. Housden
    • 1
  • Christoph Kolbitsch
    • 1
  • Jamie R. McClelland
    • 3
  • Daniel Rueckert
    • 2
  • Andy P. King
    • 1
  1. 1.Division of Imaging SciencesKing’s College LondonLondonUK
  2. 2.Biomedical Image Analysis Group, Department of ComputingImperial College LondonLondonUK
  3. 3.Centre for Medical Image ComputingUniversity College LondonLondonUK

Personalised recommendations