Group Testing for Longitudinal Data

  • Yi HongEmail author
  • Nikhil Singh
  • Roland Kwitt
  • Marc Niethammer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9123)


We consider how to test for group differences of shapes given longitudinal data. In particular, we are interested in differences of longitudinal models of each group’s subjects. We introduce a generalization of principal geodesic analysis to the tangent bundle of a shape space. This allows the estimation of the variance and principal directions of the distribution of trajectories that summarize shape variations within the longitudinal data. Each trajectory is parameterized as a point in the tangent bundle. To study statistical differences in two distributions of trajectories, we generalize the Bhattacharyya distance in Euclidean space to the tangent bundle. This not only allows to take second-order statistics into account, but also serves as our test-statistic during permutation testing. Our method is validated on both synthetic and real data, and the experimental results indicate improved statistical power in identifying group differences. In fact, our study sheds new light on group differences in longitudinal corpus callosum shapes of subjects with dementia versus normal controls.


Longitudinal data Distribution of trajectories Tangent bundle Group testing Bhattacharyya distance 



This work was supported by NSF EECS-1148870 and NSF EECS-0925875.


  1. 1.
    Bhattacharyya, A.: On a measure of divergence between two multinomial populations. Sankhyā Indian J. Stat. 7(4), 401–406 (1946)zbMATHGoogle Scholar
  2. 2.
    Bickel, P.J., Levina, E.: Covariance regularization by thresholding. Ann. Stat. 36(6), 2577–2604 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. IJCV 103(1), 22–59 (2013)zbMATHCrossRefGoogle Scholar
  4. 4.
    Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. IJCV 105(2), 171–185 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE TMI 23(8), 995–1005 (2004)Google Scholar
  6. 6.
    Gilmore, J.H., Shi, F., Woolson, S.L., Knickmeyer, R.C., Short, S.J., Lin, W., Zhu, H., Hamer, R.M., Styner, M., Shen, D.: Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb. Cortex 22(11), 2478–2485 (2012)CrossRefGoogle Scholar
  7. 7.
    Hong, Y., Joshi, S., Sanchez, M., Styner, M., Niethammer, M.: Metamorphic geodesic regression. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 197–205. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Lee, J.: Introduction to Smooth Manifolds. Springer, New York (2012) CrossRefGoogle Scholar
  10. 10.
    Mahalanobis, P.C.: On the generalized distance in statistics. Proc. Natl. Inst. Sci. (Calcutta) 2, 49–55 (1936)zbMATHGoogle Scholar
  11. 11.
    Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies: longitudinal mri data in nondemented and demented older adults. J. Cogn. Neurosci. 22(12), 2677–2684 (2010)CrossRefGoogle Scholar
  12. 12.
    Muralidharan, P., Fletcher, P.T.: Sasaki metrics for analysis of longitudinal data on manifolds. In: CVPR, pp. 1027–1034 (2012)Google Scholar
  13. 13.
    Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic regression for image time-series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  14. 14.
    Oliver, D.S.: Calculation of the inverse of the covariance. Math. Geol. 30(7), 911–933 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Sasaki, S.: On the differential geometry of tangent bundles of riemannian manifolds. TMJ 10(3), 338–354 (1958)zbMATHGoogle Scholar
  16. 16.
    Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: A hierarchical geodesic model for diffeomorphic longitudinal shape analysis. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 560–571. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Su, J., Kurtek, S., Klassen, E., Srivastava, A.: Statistical analysis of trajectories on riemannian manifolds: bird migration, hurricane tracking and video surveillance. Ann. Appl. Stat. 8(1), 530–552 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Su, J., Srivastrava, A., de Souza, F., Sarkar, S.: Rate-invariant analysis of trajectories on riemannian manifolds with application in visual speech recognition. In: CVPR, pp. 620–627 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yi Hong
    • 1
    Email author
  • Nikhil Singh
    • 1
  • Roland Kwitt
    • 2
  • Marc Niethammer
    • 1
  1. 1.Department of Computer ScienceUNC Chapel HillChapel HillUSA
  2. 2.Department of Computer ScienceUniversity of SalzburgSalzburgAustria

Personalised recommendations