Advertisement

Trade-Off Approaches for Leak Resistant Modular Arithmetic in RNS

  • Christophe Negre
  • Guilherme Perin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9144)

Abstract

On an embedded device, an implementation of cryptographic operation, like an RSA modular exponentiation [12], can be attacked by side channel analysis. In particular, recent improvements on horizontal power analysis [3, 10] render ineffective the usual counter-measures which randomize the data at the very beginning of the computations [2, 4]. To counteract horizontal analysis it is necessary to randomize the computations all along the exponentiation. The leak resistant arithmetic (LRA) proposed in [1] implements modular arithmetic in residue number system (RNS) and randomizes the computations by randomly changing the RNS bases. We propose in this paper a variant of the LRA in RNS: we propose to change only one or a few moduli of the RNS basis. This reduces the cost of the randomization and makes it possible to be executed at each loop of a modular exponentiation.

Keywords

Leak resistant arithmetic Randomization Modular multiplication Residue number system RSA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajard, J.-C., Imbert, L., Liardet, P.-Y., Teglia, Y.: Leak resistant arithmetic. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 62–75. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  2. 2.
    Ciet, M., Joye, M.: (Virtually) free randomization techniques for elliptic curve cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 348–359. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  3. 3.
    Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  4. 4.
    Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  5. 5.
    Garner, H.L.: The Residue Number System. IRE Trans. on Elctronic Computers 8, 140–147 (1959)CrossRefGoogle Scholar
  6. 6.
    Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  7. 7.
    Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for fast parallel montgomery multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 523–538. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  8. 8.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  9. 9.
    Montgomery, P.: Modular Multiplication Without Trial Division. Math. Computation, 519–521 (1985)Google Scholar
  10. 10.
    Perin, G., Imbert, L., Torres, L., Maurine, P.: Attacking randomized exponentiations using unsupervised learning. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 144–160. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Posch, K.C., Posch, R.: Modulo Reduction in Residue Number Systems. IEEE Trans. Parallel Distrib. Syst. 6(5), 449–454 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21, 120–126 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer, Heidelberg (2001) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Team DALIUniversité de PerpignanPerpignanFrance
  2. 2.LIRMM, UMR 5506Université Montpellier 2 and CNRSMontpellierFrance
  3. 3.RiscureDelftThe Netherlands

Personalised recommendations