Privately Computing Set-Union and Set-Intersection Cardinality via Bloom Filters

  • Rolf Egert
  • Marc Fischlin
  • David Gens
  • Sven Jacob
  • Matthias Senker
  • Jörn Tillmanns
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9144)


In this paper we propose a new approach to privately compute the set-union cardinality and the set-intersection cardinality among multiple honest-but-curious parties. Our approach is inspired by a proposal of Ashok and Mukkamala (DBSec’14) which deploys Bloom filters to approximate the size tightly. One advantage of their solution is that it avoids ample public-key cryptography. Unfortunately, we show here that their protocol is vulnerable to actual attacks. We therefore propose a new Bloom filter based protocol, also forgoing heavy cryptography, and prove its security.


Hash Function Bloom Filter Core Node Homomorphic Encryption Oblivious Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashok, V.G., Mukkamala, R.: A scalable and efficient privacy preserving global itemset support approximation using bloom filters. In: Atluri, V., Pernul, G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 382–389. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In: Youm, H.Y., Won, Y. (eds.) ASIACCS 2012, pp. 40–41. ACM Press, May 2012Google Scholar
  3. 3.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)zbMATHCrossRefGoogle Scholar
  4. 4.
    De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 789–800. ACM Press, November 2013Google Scholar
  9. 9.
    Fischlin, M., Pinkas, B., Sadeghi, A.-R., Schneider, T., Visconti, I.: Secure set intersection with untrusted hardware tokens. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 1–16. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  11. 11.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  12. 12.
    Frikken, K.B.: Privacy-preserving set union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  13. 13.
    Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University Press (2004)Google Scholar
  14. 14.
    Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015) Google Scholar
  15. 15.
    Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using standardsmartcards. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 491–500. ACM Press, October 2008Google Scholar
  16. 16.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. Journal of Cryptology 23(3), 422–456 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. Journal of Cryptology 25(3), 383–433 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Hohenberger, S., Weis, S.A.: Honest-verifier private disjointness testing without random oracles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 277–294. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  19. 19.
    Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  20. 20.
    Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  21. 21.
    Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set intersection to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014) Google Scholar
  22. 22.
    Kerschbaum, F.: Public-key encrypted bloom filters with applications to supply chain integrity. In: Li, Y. (ed.) Data and Applications Security and Privacy XXV. LNCS, vol. 6818, pp. 60–75. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  23. 23.
    Kerschbaum, F.: Outsourced private set intersection using homomorphic encryption. In: Youm, H.Y., Won, Y. (eds.) ASIACCS 2012, pp. 85–86. ACM Press, May 2012Google Scholar
  24. 24.
    Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109–124. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  25. 25.
    Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  26. 26.
    Many, D., Burkhart, M., Dimitropoulos, X.: Tech. Rep. TIK report no. 345, ETH Zurich, Switzerland (2012)Google Scholar
  27. 27.
    Papapetrou, O., Siberski, W., Nejdl, W.: Cardinality estimation and dynamic length adaptation for bloom filters. Distributed and Parallel Databases 28(2–3), 119–156 (2010)CrossRefGoogle Scholar
  28. 28.
    Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20–22, pp. 797–812. USENIX Association (2014)Google Scholar
  29. 29.
    Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters for distributed systems. IEEE Communications Surveys and Tutorials 14(1), 131–155 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rolf Egert
    • 1
  • Marc Fischlin
    • 1
  • David Gens
    • 1
  • Sven Jacob
    • 1
  • Matthias Senker
    • 1
  • Jörn Tillmanns
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations