Investigating Trade-offs in Sexual Populations with Gene Flow

  • Zachary N. ArdernEmail author
  • Matthew R. Goddard


Understanding the processes underlying trade-offs between environments, where adaptation to one results in decreased fitness in another, is important in understanding evolutionary processes across a wide range of organisms. The molecular basis of this evolutionary phenomenon is a key question in biology generally. Unravelling the basis of trade-offs has application in understanding the maintenance of sexual reproduction in most eukaryotic lineages in spite of apparent costs. In this chapter, we discuss the evolutionary problem of sexual reproduction, and its relationship with trade-offs, working from August Weismann’s suggestion that sex improves the efficiency of natural selection. We argue that microbial experimental evolution is an important way in which claims about trade-offs and sex can be tested and that these experiments need to be developed to better represent real world ecological and evolutionary problems. We review experiments, including from our laboratory, which bear on the question of the benefits of sex in complex environments. We also argue for the necessity of a genomic rather than merely genetic perspective on these questions.


Sexual Reproduction Deleterious Mutation Fitness Landscape Environmental Niche Divergent Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



V. Ardern and J. Forrest for assistance with diagrams, and Prof. G. Bell for discussions.


  1. Adams J, Rosenzweig F (2014) Experimental microbial evolution: history and conceptual underpinnings. Genomics 104:393–398. doi: 10.1016/j.ygeno.2014.10.004 CrossRefPubMedGoogle Scholar
  2. Ballard JWO, Pichaud N (2014) Mitochondrial DNA: more than an evolutionary bystander. Funct Ecol 28:218–231. doi: 10.1111/1365-2435.12177 CrossRefGoogle Scholar
  3. Ball P (2013) DNA: celebrate the unknowns. Nature 496:419–420. doi: 10.1038/496419a CrossRefPubMedGoogle Scholar
  4. Behe MJ (2010) Experimental evolution, loss-of-function mutations, and “the first rule of adaptive evolution”. Q Rev Biol 85:419–445. doi: 10.1086/656902 CrossRefPubMedGoogle Scholar
  5. Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. Croom Helm, LondonGoogle Scholar
  6. Bell G (2008) Selection: the mechanism of evolution, 2nd edn. Oxford University Press, Oxford, New YorkGoogle Scholar
  7. Bennett AF, Lenski RE (2007) An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci 104:8649–8654. doi: 10.1073/pnas.0702117104 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bernstein H, Bernstei C (2013) Evolutionary origin and adaptive function of meiosis. MeiosisGoogle Scholar
  9. Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–518. doi: 10.1038/nature11514 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Burt A (2000) Sex, recombination, and the efficacy of selection—was Weisman right? Evolution 54:337–351. doi: 10.1111/j.0014-3820.2000.tb00038.x PubMedGoogle Scholar
  11. Butlin R (2002) The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet 3:311–317. doi: 10.1038/nrg749 CrossRefPubMedGoogle Scholar
  12. Carroll SM, Lee M-C, Marx CJ (2013) Sign epistasis limits evolutionary trade-offs at the confluence of single- and multi-carbon metabolism in Methylobacterium extorquens AM1. Evolution n/a–n/a. doi:  10.1111/evo.12301
  13. Colegrave N (2012) The evolutionary success of sex. EMBO Rep 13:774–778. doi: 10.1038/embor.2012.109 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Cooper VS (2014) The origins of specialization: insights from bacteria held 25 years in captivity. PLoS Biol 12:e1001790. doi: 10.1371/journal.pbio.1001790 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Cooper VS, Lenski R (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407Google Scholar
  16. Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183:2834–2841. doi: 10.1128/JB.183.9.2834-2841.2001 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469. doi: 10.1038/nrg1088 CrossRefPubMedGoogle Scholar
  18. El-Soda M, Malosetti M, Zwaan BJ, et al (2014) Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci doi: 10.1016/j.tplants.2014.01.001
  19. Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756PubMedCentralPubMedGoogle Scholar
  20. Fry JD (1996) The evolution of host specialization: are trade-offs overrated? The American NaturalistGoogle Scholar
  21. García-Arenal F, Fraile A (2013) Trade-offs in host range evolution of plant viruses. Plant Pathol 62:2–9. doi: 10.1111/ppa.12104 CrossRefGoogle Scholar
  22. Goddard MR (2007) Why bother with sex? answers from experiments with yeast and other organisms. In: Taylor JW, Kronstad JW, Heitman J, Casselton LA (eds) Sex in fungi. American Society of Microbiology, pp 489–506Google Scholar
  23. Goddard MR, Godfray HCJ, Burt A (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–640. doi: 10.1038/nature03405 CrossRefPubMedGoogle Scholar
  24. Gorelick R, Heng HHQ (2011) Sex reduces genetic variation: a multidisciplinary review. Evolution 65:1088–1098. doi: 10.1111/j.1558-5646.2010.01173.x CrossRefPubMedGoogle Scholar
  25. Gouyon P-H, de Vienne D, Giraud T (2015) Sex and evolution. In: Heams T, Huneman P, Lecointre G, Silberstein M (eds) Handbook of evolutionary thinking in the sciences. Springer, The Netherlands, pp 499–507Google Scholar
  26. Gray JC, Goddard MR (2012a) Gene-flow between niches facilitates local adaptation in sexual populations. Ecol Lett 15:955–962. doi: 10.1111/j.1461-0248.2012.01814.x CrossRefPubMedGoogle Scholar
  27. Gray JC, Goddard MR (2012b) Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evol Biol 12:43. doi: 10.1186/1471-2148-12-43 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Grishkevich V, Yanai I (2013) The genomic determinants of genotype x environment interactions in gene expression. Trends Genet 29:479–487. doi: 10.1016/j.tig.2013.05.006 CrossRefPubMedGoogle Scholar
  29. Haag CR, Roze D (2007) Genetic load in sexual and asexual diploids: segregation, dominance and genetic drift. Genetics 176:1663–1678. doi: 10.1534/genetics.107.073080 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Hartfield M, Keightley PD (2012) Current hypotheses for the evolution of sex and recombination. Integr Zool 7:192–209. doi: 10.1111/j.1749-4877.2012.00284.x CrossRefPubMedGoogle Scholar
  31. Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173:579–588. doi: 10.1086/597611 CrossRefPubMedGoogle Scholar
  32. Hoekstra RF (2005) Evolutionary biology: why sex is good. Nature 434:571–573. doi: 10.1038/434571a CrossRefPubMedGoogle Scholar
  33. Jasmin J-N, Zeyl C (2013) Evolution of pleiotropic costs in experimental populations. J Evol Biol 26:1363–1369. doi: 10.1111/jeb.12144 CrossRefPubMedGoogle Scholar
  34. Judson OP, Normark BB (1996) Ancient asexual scandals. Trends Ecol Evol 11:41–46. doi: 10.1016/0169-5347(96)81040-8 CrossRefPubMedGoogle Scholar
  35. Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity: Experimental evolution in variable environments. J Evol Biol 15:173–190. doi: 10.1046/j.1420-9101.2002.00377.x CrossRefGoogle Scholar
  36. Kassen R (2014) Experimental evolution and the nature of biodiversity. Roberts and Company, Greenwood VillageGoogle Scholar
  37. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi: 10.1111/j.1461-0248.2004.00684.x CrossRefGoogle Scholar
  38. King T, Ishihama A, Kori A, Ferenci T (2004) A regulatory trade-off as a source of strain variation in the species Escherichia coli. J Bacteriol 186:5614–5620. doi: 10.1128/JB.186.17.5614-5620.2004 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440. doi: 10.1038/336435a0 CrossRefPubMedGoogle Scholar
  40. Kvitek DJ, Sherlock G (2011) Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet 7:e1002056. doi: 10.1371/journal.pgen.1002056 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Leiby N (2014) Adaptation and specialization in the evolution of bacterial metabolism. Harvard University, CambridgeGoogle Scholar
  42. Leiby N, Marx CJ (2014) Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli. PLoS Biol 12:e1001789. doi: 10.1371/journal.pbio.1001789 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Leinonen PH, Remington DL, LeppäLä J, Savolainen O (2013) Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata. Mol Ecol 22:709–723. doi: 10.1111/j.1365-294X.2012.05678.x CrossRefPubMedGoogle Scholar
  44. Lieberman BS, Vrba ES (2005) Stephen Jay Gould on species selection: 30 years of insight. Paleobiology 31:113–121. doi:  10.1666/0094-8373(2005)031[0113:SJGOSS]2.0.CO;2
  45. Lively CM, Morran LT (2014) The ecology of sexual reproduction. J Evol Biol 27:1292–1303. doi: 10.1111/jeb.12354 PubMedCentralCrossRefPubMedGoogle Scholar
  46. MacLean RC, Bell G (2002) Experimental adaptive radiation in Pseudomonas. Am Nat 160:569–581. doi: 10.1086/342816 CrossRefPubMedGoogle Scholar
  47. MacLean RC, Bell G, Rainey PB (2004) The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc Natl Acad Sci 101:8072–8077. doi: 10.1073/pnas.0307195101 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Marini A, Matmati N, Morpurgo G (1999) Starvation in yeast increases non-adaptive mutation. Curr Genet 35:77–81. doi: 10.1007/s002940050435 CrossRefPubMedGoogle Scholar
  49. Martin G, Lenormand T (2015) The fitness effect of mutations across environments. Fisher’s geometrical model with multiple optima. Evolution doi: 10.1111/evo.12671 Google Scholar
  50. Nosil P, Funk DJ, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18:375–402. doi: 10.1111/j.1365-294X.2008.03946.x CrossRefPubMedGoogle Scholar
  51. Orr HA (2002) The population genetics of adaptation: the adaptation of DNA sequences. Evolution 56:1317–1330. doi: 10.1111/j.0014-3820.2002.tb01446.x CrossRefPubMedGoogle Scholar
  52. Orr HA (2006) The distribution of fitness effects among beneficial mutations in Fisher’s geometric model of adaptation. J Theor Biol 238:279–285. doi: 10.1016/j.jtbi.2005.05.001 CrossRefPubMedGoogle Scholar
  53. Otto SP (2009) The evolutionary enigma of sex. Am Nat 174:S1–S14. doi: 10.1086/599084 CrossRefPubMedGoogle Scholar
  54. Paaby AB, Rockman MV (2014) Cryptic genetic variation: evolution’s hidden substrate. Nat Rev Genet 15:247–258. doi: 10.1038/nrg3688 CrossRefPubMedGoogle Scholar
  55. Parera M, Martinez MA (2014) Strong epistatic interactions within a single protein. Mol Biol Evol 31:1546–1553. doi: 10.1093/molbev/msu113 CrossRefPubMedGoogle Scholar
  56. Peck JR (1994) A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137:597–606PubMedCentralPubMedGoogle Scholar
  57. Pedersen SD (2013) Systems biology investigations of Pseudomonas aeruginosa evolution in association with human airway infections. Technical University of DenmarkGoogle Scholar
  58. Penterman J, Nguyen D, Anderson E et al (2014) Rapid evolution of culture-impaired bacteria during adaptation to biofilm growth. Cell Rep. doi: 10.1016/j.celrep.2013.12.019 PubMedCentralPubMedGoogle Scholar
  59. Poulton EB, Poulton EB, Schönland S et al (1889) Essays upon heredity and kindred biological problems. In: Poulton EB, Schönland S, Shipley AE (eds, Authorised translation). Clarendon Press, OxfordGoogle Scholar
  60. Qian W, Ma D, Xiao C et al (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2:1399–1410. doi: 10.1016/j.celrep.2012.09.017 PubMedCentralCrossRefPubMedGoogle Scholar
  61. Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72. doi: 10.1038/27900 CrossRefPubMedGoogle Scholar
  62. Rattray A, Santoyo G, Shafer B, Strathern JN (2015) Elevated mutation rate during meiosis in Saccharomyces cerevisiae. PLoS Genet 11:e1004910. doi: 10.1371/journal.pgen.1004910 PubMedCentralCrossRefPubMedGoogle Scholar
  63. Remold S (2012) Understanding specialism when the jack of all trades can be the master of all. Proc R Soc B Biol Sci 279:4861–4869. doi: 10.1098/rspb.2012.1990 CrossRefGoogle Scholar
  64. Sanjuan R, Elena SF (2006) Epistasis correlates to genomic complexity. Proc Natl Acad Sci 103:14402–14405. doi: 10.1073/pnas.0604543103 PubMedCentralCrossRefPubMedGoogle Scholar
  65. Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741. doi: 10.1126/science.1160006 CrossRefPubMedGoogle Scholar
  66. Schwander T, Crespi BJ (2009) Twigs on the tree of life? Neutral and selective models for integrating macroevolutionary patterns with microevolutionary processes in the analysis of asexuality. Mol Ecol 18:28–42. doi: 10.1111/j.1365-294X.2008.03992.x CrossRefPubMedGoogle Scholar
  67. Stearns SC (1990) The evolutionary maintenance of sexual reproduction: the solutions proposed for a longstanding problem. J Genet 69:1–10. doi: 10.1007/BF02931662 CrossRefGoogle Scholar
  68. Wenger JW, Piotrowski J, Nagarajan S et al (2011) Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS Genet 7:e1002202. doi: 10.1371/journal.pgen.1002202 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Xu J (2012) Rapid evolution in experimental populations of major life forms. In: Singh RS, Xu J, Kulathinal RJ (eds) Rapidly evolving genes and genetic systems. Oxford University Press, Oxford, pp 40–52Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.The School of Life SciencesLincoln UniversityLincolnUK

Personalised recommendations