A Probabilistic Analysis of the Reduction Ratio in the Suffix-Array IS-Algorithm

  • Cyril NicaudEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9133)


We show that there are asymptotically \(\gamma n\) LMS-factors in a random word of length \(n\), for some explicit \(\gamma \) that depends on the model of randomness under consideration. Our results hold for uniform distributions, memoryless sources and Markovian sources. From this analysis, we give new insight on the typical behavior of the IS-algorithm [9], which is one of the most efficient algorithms available for computing the suffix array.


Markov Chain Reduction Ratio Recursive Call Suffix Tree Recurrent State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.): CPM 2003. LNCS, vol. 2676. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  2. 2.
    Dunham, I., Hunt, A., Collins, J., Bruskiewich, R., Beare, D., Clamp, M., Smink, L., Ainscough, R., Almeida, J., Babbage, A., et al.: The DNA sequence of human chromosome 22. Nature 402(6761), 489–495 (1999)CrossRefGoogle Scholar
  3. 3.
    Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.): ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003) zbMATHGoogle Scholar
  4. 4.
    Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix arrays. In: Baeza-Yates et al. [1], pp. 186–199Google Scholar
  5. 5.
    Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-Yates et al. [1], pp. 200–210Google Scholar
  6. 6.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Soc., Providence (2009) zbMATHGoogle Scholar
  7. 7.
    Manber, U., Myers, E.W.: Suffix Arrays: A New Method for On-Line String Searches. SIAM J. Comput. 22(5), 935–948 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches. In: Johnson, D.S. (eds.) Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, pp. 319–327. SIAM, 22–24 January 1990Google Scholar
  9. 9.
    Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time suffix array construction. IEEE Trans. Comput. 60(10), 1471–1484 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Norris, J.R.: Markov chains. Statistical and probabilistic mathematics. Cambridge University Press, Cambridge (1998) zbMATHGoogle Scholar
  11. 11.
    Powell, M.: The Canterbury Corpus (2001). Accessed 25 April 2002
  12. 12.
    Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 1–31 (2007)CrossRefGoogle Scholar
  13. 13.
    Vallée, B.: Dynamical sources in information theory: fundamental intervals and word prefixes. Algorithmica 29(1–2), 262–306 (2001)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LIGMUniversité Paris-Est and CNRSParisFrance

Personalised recommendations