Advertisement

On Maximal Unbordered Factors

  • Alexander Loptev
  • Gregory Kucherov
  • Tatiana StarikovskayaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9133)

Abstract

Given a string \(S\) of length \(n\), its maximal unbordered factor is the longest factor which does not have a border. In this work we investigate the relationship between \(n\) and the length of the maximal unbordered factor of \(S\). We prove that for the alphabet of size \(\sigma \ge 5\) the expected length of the maximal unbordered factor of a string of length \(n\) is at least \(0.99 n\) (for sufficiently large values of \(n\)). As an application of this result, we propose a new algorithm for computing the maximal unbordered factor of a string.

Keywords

Linear Time Minimal Period Empty String Alphabet Size Expected Running Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers whose suggestions greatly improved the quality of this work.

References

  1. 1.
    Assous, R., Pouzet, M.: Une caractérisation des mots périodiques. Discrete Math. 25(1), 1–5 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Clément, J., Giambruno, L.: On the number of prefix and border tables. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 442–453. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Duval, J.-P.: Relationship between the period of a finite word and the length of its unbordered segments. Discrete Math. 40(1), 31–44 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Duval, J.-P., Lecroq, T., Lefebvre, A.: Border array on bounded alphabet. J. Autom. Lang. Comb. 10(1), 51–60 (2005)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Duval, J.-P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of Knuth-Morris-Pratt arrays. In: Proceedings of Conference in Honor of Donald E. Knuth (2007)Google Scholar
  6. 6.
    Duval, J.-P., Lecroq, T., Lefebvre, A.: Linear computation of unbordered conjugate on unordered alphabet. Theor. Comp. Sci. 522, 77–84 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ehrenfeucht, A., Silberger, D.M.: Periodicity and unbordered segments of words. Discrete Math. 26(2), 101–109 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Franĕk, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying a border array in linear time. J. Comb. Math. Comb. Comput. 42, 223–236 (2000)Google Scholar
  9. 9.
    Gawrychowski, P., Jeż, A., Jeż, Ł.: Validating the Knuth-Morris-Pratt failure function, fast and online. Theor. Comp. Sys. 54(2), 337–372 (2014)CrossRefGoogle Scholar
  10. 10.
    Holub, S., Nowotka, D.: The Ehrenfeucht-Silberger problem. J. Comb. Theor., Ser. A 119(3), 668–682 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited and applications to approximate string searching. J. Discrete Algorithms 8(4), 418–428 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Efficient data structures for the factor periodicity problem. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284–294. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  13. 13.
    Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern matching queries in a text and applications. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 532–551 (2014)Google Scholar
  14. 14.
    Moore, D., Smyth, W.F., Miller, D.: Counting distinct strings. Algorithmica 23(1), 1–13 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Morris Jr., J.H., Pratt, V.R.: A linear pattern-matching algorithm, report 40. Technical report, University of California, Berkeley (1970)Google Scholar
  16. 16.
    Nielsen, P.: A note on bifix-free sequences. IEEE Trans. Inf. Theor. 19(5), 704–706 (1973)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexander Loptev
    • 1
  • Gregory Kucherov
    • 2
  • Tatiana Starikovskaya
    • 3
    Email author
  1. 1.Higher School of EconomicsMoscowRussia
  2. 2.Laboratoire d’Informatique Gaspard MongeUniversité Paris-Est and CNRSMarne-la-vallée, ParisFrance
  3. 3.University of BristolBristolUK

Personalised recommendations