Tighter Bounds for the Sum of Irreducible LCP Values

  • Juha KärkkäinenEmail author
  • Dominik Kempa
  • Marcin Piątkowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9133)


The suffix array is frequently augmented with the longest-common-prefix (LCP) array that stores the lengths of the longest common prefixes between lexicographically adjacent suffixes of a text. While the sum of the values in the LCP array can be \(\Omega (n^2)\) for a text of length \(n\), the sum of so-called irreducible LCP values was shown to be \(\mathcal {O}(n\lg n)\) just a few years ago. In this paper, we improve the bound to \(\mathcal {O}(n\lg r)\), where \(r\le n\) is the number of runs in the Burrows-Wheeler transform of the text. We also show that our bound is tight up to lower order terms (unlike the previous bound). Our results and the techniques used in proving them provide new insights into the combinatorics of text indexing and compression, and have immediate applications to LCP array construction algorithms.


  1. 1.
    Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm. Technical report 124, Digital Equipment Corporation, Palo Alto, California (1994)Google Scholar
  3. 3.
    Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16(1), 109–114 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Higgins, P.M.: Burrows-Wheeler transformations and de Bruijn words. Theor. Comput. Sci. 457, 128–136 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Kärkkäinen, J., Kempa, D.: LCP array construction in external memory. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 412–423. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly repetitive sequence collections. J. Comp. Biol. 17(3), 281–308 (2010)CrossRefGoogle Scholar
  8. 8.
    Manber, U., Myers, G.W.: Suffix arrays: a new method for on-line string searches. SIAM J. Comp. 22(5), 935–948 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-Wheeler transform. Theor. Comput. Sci. 387(3), 298–312 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Manzini, G.: Two space saving tricks for linear time LCP array computation. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372–383. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  11. 11.
    Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39(1), 1–61 (2007)CrossRefGoogle Scholar
  12. 12.
    Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction. Oldenbusch Verlag, Bremen, Germany (2013)Google Scholar
  13. 13.
    Ruskey, F.: Combinatorial generation, working version (1j-CSC 425/520) (2003)Google Scholar
  14. 14.
    Sirén, J.: Sampled longest common prefix array. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 227–237. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Juha Kärkkäinen
    • 1
    Email author
  • Dominik Kempa
    • 1
  • Marcin Piątkowski
    • 1
    • 2
  1. 1.Helsinki Institute of Information Technology (HIIT) and Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland
  2. 2.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityTorunPoland

Personalised recommendations