Lempel Ziv Computation in Small Space (LZ-CISS)

  • Johannes Fischer
  • Tomohiro I
  • Dominik KöpplEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9133)


For both the Lempel Ziv 77- and 78-factorization we propose factorization algorithms using \((1+\epsilon ) n \lg n + \mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( n\right) \) bits (for any positive constant \(\epsilon \le 1\)) working space (including the space for the output) for any text of size \(n\) over an integer alphabet in \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( n / \epsilon ^{2}\right) \) time.


Suffix Tree Suffix Array Factor Position Trie Implementation Marked Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amir, A., Farach, M., Idury, R.M., Poutré, J.A.L., Schäffer, A.A.: Improved dynamic dictionary matching. Inf. Comput. 119(2), 258–282 (1995)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bannai, H., Inenaga, S., Takeda, M.: Efficient LZ78 factorization of grammar compressed text. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 86–98. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Fischer, J., I, T., Köppl, D.: Lempel Ziv computation in small space (LZ-CISS) (2015). arXiv:1504.02605
  5. 5.
    Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Fischer, J., Gawrychowski, P.: Alphabet-dependent string searching with wexponential search trees. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 160–171. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proceedings of the 2013 Data Compression Conference, DCC 2013, pp. 133–142. IEEE Computer Society, Washington (2013)Google Scholar
  8. 8.
    Goto, K., Bannai, H.: Space efficient linear time Lempel-Ziv factorization for small alphabets. In: Data Compression Conference, DCC 2014, Snowbird, UT, USA, 26–28 March 2014, pp. 163–172 (2014)Google Scholar
  9. 9.
    Jansson, J., Sadakane, K., Sung, W.: Linked dynamic tries with applications to LZ-compression in sublinear time and space. Algorithmica 71(4), 969–988 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization: simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 189–200. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kempa, D., Puglisi, S.J.: Lempel-Ziv factorization: simple, fast, practical. In: ALENEX, pp. 103–112 (2013)Google Scholar
  13. 13.
    Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches. SIAM J. Comput. 22(5), 935–948 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations and functions. Theor. Comput. Sci. 438, 74–88 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Nakashima, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: Constructing LZ78 tries and position heaps in linear time for large alphabets. Inform. Process. Lett. 115(9), 655–659 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees. ACM Trans. Algorithms 10(3), 16:1–16:39 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ohlebusch, E., Fischer, J., Gog, S.: CST++. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 322–333. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Välimäki, N., Mäkinen, V., Gerlach, W., Dixit, K.: Engineering a compressed suffix tree implementation. ACM J. Exp. Algorithmics 14 (2009)Google Scholar
  19. 19.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceTU DortmundDortmundGermany

Personalised recommendations