Lempel Ziv Computation in Small Space (LZ-CISS)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9133)


For both the Lempel Ziv 77- and 78-factorization we propose factorization algorithms using \((1+\epsilon ) n \lg n + \mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( n\right) \) bits (for any positive constant \(\epsilon \le 1\)) working space (including the space for the output) for any text of size \(n\) over an integer alphabet in \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( n / \epsilon ^{2}\right) \) time.


  1. 1.
    Amir, A., Farach, M., Idury, R.M., Poutré, J.A.L., Schäffer, A.A.: Improved dynamic dictionary matching. Inf. Comput. 119(2), 258–282 (1995)MATHCrossRefGoogle Scholar
  2. 2.
    Bannai, H., Inenaga, S., Takeda, M.: Efficient LZ78 factorization of grammar compressed text. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 86–98. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Fischer, J., I, T., Köppl, D.: Lempel Ziv computation in small space (LZ-CISS) (2015). arXiv:1504.02605
  5. 5.
    Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Fischer, J., Gawrychowski, P.: Alphabet-dependent string searching with wexponential search trees. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 160–171. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proceedings of the 2013 Data Compression Conference, DCC 2013, pp. 133–142. IEEE Computer Society, Washington (2013)Google Scholar
  8. 8.
    Goto, K., Bannai, H.: Space efficient linear time Lempel-Ziv factorization for small alphabets. In: Data Compression Conference, DCC 2014, Snowbird, UT, USA, 26–28 March 2014, pp. 163–172 (2014)Google Scholar
  9. 9.
    Jansson, J., Sadakane, K., Sung, W.: Linked dynamic tries with applications to LZ-compression in sublinear time and space. Algorithmica 71(4), 969–988 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization: simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 189–200. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kempa, D., Puglisi, S.J.: Lempel-Ziv factorization: simple, fast, practical. In: ALENEX, pp. 103–112 (2013)Google Scholar
  13. 13.
    Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches. SIAM J. Comput. 22(5), 935–948 (1993)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations and functions. Theor. Comput. Sci. 438, 74–88 (2012)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Nakashima, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: Constructing LZ78 tries and position heaps in linear time for large alphabets. Inform. Process. Lett. 115(9), 655–659 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees. ACM Trans. Algorithms 10(3), 16:1–16:39 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ohlebusch, E., Fischer, J., Gog, S.: CST++. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 322–333. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Välimäki, N., Mäkinen, V., Gerlach, W., Dixit, K.: Engineering a compressed suffix tree implementation. ACM J. Exp. Algorithmics 14 (2009)Google Scholar
  19. 19.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceTU DortmundDortmundGermany

Personalised recommendations