Evolutionary Approaches to Ethnobiology

  • C. Haris Saslis-Lagoudakis
  • Nina Rønsted
  • Andrew C. Clarke
  • Julie A. Hawkins


Phylogenies reconstruct species’ evolutionary relationships and phylogenetic methods provide a comparative framework when traits correlate with evolutionary relationships. This study reviews the applications of these methods in ethnobiological research, particularly ethnobotany and ethnopharmacology. We discuss the advantages of phylogenetic methods for the exploration of medicinal plant diversity and cross-cultural ethnobiology. We conclude that, despite current limitations, phylogenies can be used to reveal and interpret patterns of traditional use of plants and bring together the fields of ethnobiology and pharmacology, synthesising biochemical, pharmacological and ethnopharmacological data. The evolutionary approach to ethnobiology will require further collaboration between evolutionary biologists and ethnobiologists to answer long-standing questions about the relationship of humans with the natural environment.


Ethnobiology Ethnobotany Natural products Phylogeny Traditional knowledge 



The authors would like to thank Marco Pautasso, Lynsey Bunnefeld, Natalie Iwanycki and Madeleine Ernst for comments on an early draft of this manuscript. CHSL was supported by funding from the People Programme (Marie Curie Actions) of the European Union’s 7th Framework programme (FP7-PEOPLE-2012-IEF-328637—BiodiversityAltitude) and NR by the Carlsberg Foundation. This work was also supported by funding from the People Programme (Marie Curie Actions) of the European Union’s 7th Framework programme FP//2007/2013 under REA grant agreement no. PITN-GA-2013-606895—MedPlant.


  1. A.P.G. (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2):105–121. doi: 10.1111/j.1095-8339.2009.00996.x CrossRefGoogle Scholar
  2. Agrawal AA, Salminen J-P, Fishbein M (2009) Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63(3):663–673CrossRefPubMedGoogle Scholar
  3. Albuquerque UP, Andrade LHC (1998) Etnobotánica del género Ocimum L. (Lamiaceae) en las comunidades afrobrasileñas. Anales Jard Bot Madrid 56:107–118Google Scholar
  4. Albuquerque UP, Medeiros PM (2013) What is evolutionary ethnobiology? Ethnobio Conserv 2Google Scholar
  5. Amiguet VT, Arnason JT, Maquin P, Cal V, Sánchez-Vindas P, Alvarez LP (2006) A regression analysis of Q’eqchi’ Maya medicinal plants from Southern Belize. Econ Bot 60(1):24–38. doi:10.1663/0013-0001(2006)60[24:araoqm];2CrossRefGoogle Scholar
  6. Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415(6873):757–764CrossRefPubMedGoogle Scholar
  7. Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J (2004) Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci U S A 101(30):11040–11045. doi: 10.1073/pnas.0401892101 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bay-Smidt MGK, Jäger AK, Krydsfeldt K, Meerow AW, Stafford GI, Van Staden J, Rønsted N (2011) Phylogenetic selection of target species in Amaryllidaceae tribe Haemantheae for acetylcholinesterase inhibition and affinity to the serotonin reuptake transport protein. S Afr J Bot 77(1):175–183CrossRefGoogle Scholar
  9. Bennett B (2007) Doctrine of signatures: an explanation of medicinal plant discovery or dissemination of knowledge? Econ Bot 61(3):246–255CrossRefGoogle Scholar
  10. Bennett BC, Husby CE (2008) Patterns of medicinal plant use: an examination of the Ecuadorian Shuar medicinal flora using contingency table and binomial analyses. J Ethnopharmacol 116(3):422–430. doi: 10.1016/j.jep.2007.12.006 CrossRefPubMedGoogle Scholar
  11. Berlin B, Breedlove DE, Raven PH (1966) Folk taxonomies and biological classification. Science 154(3746):273–275. doi: 10.1126/science.154.3746.273 CrossRefPubMedGoogle Scholar
  12. Bininda-Emonds ORP, Gittleman JL, Purvis A (1999) Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev 74(2):143–175. doi: 10.1111/j.1469-185X.1999.tb00184.x CrossRefPubMedGoogle Scholar
  13. Bisby FA, Vaughan JG, Wright CA (1980) Chemosystematics: principles and practice. Academic, LondonGoogle Scholar
  14. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogentic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745. doi: 10.1111/j.0014-3820.2003.tb00285.x CrossRefPubMedGoogle Scholar
  15. Buckley LB, Davies TJ, Ackerly DD, Kraft NJB, Harrison SP, Anacker BL, Cornell HV, Damschen EI, Grytnes J-A, Hawkins BA, McCain CM, Stephens PR, Wiens JJ (2010) Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc R Soc B Biol Sci 277(1691):2131–2138. doi: 10.1098/rspb.2010.0179 CrossRefGoogle Scholar
  16. Ceuterick M, Vandebroek I, Torry B, Pieroni A (2008) Cross-cultural adaptation in urban ethnobotany: the Colombian folk pharmacopoeia in London. J Ethnopharmacol 120(3):342–359. doi: 10.1016/j.jep.2008.09.004 CrossRefPubMedGoogle Scholar
  17. Ceuterick M, Vandebroek I, Pieroni A (2011) Resilience of Andean urban ethnobotanies: a comparison of medicinal plant use among Bolivian and Peruvian migrants in the United Kingdom and in their countries of origin. J Ethnopharmacol 136(1):27–54. doi: 10.1016/j.jep.2011.03.038 CrossRefPubMedGoogle Scholar
  18. Cox PA (2000) Will tribal knowledge survive the millennium? Science 287(5450):44–45. doi: 10.1126/science.287.5450.44 CrossRefPubMedGoogle Scholar
  19. Cox PA, Balick MJ (1994) The ethnobotanical approach to drug discovery. Sci Am 2–7Google Scholar
  20. Cracraft J (2002) The seven great questions of systematic biology: an essential foundation for conservation and the sustainable use of biodiversity. Ann Missouri Bot Garden 89(2):127–144. doi: 10.2307/3298558 CrossRefGoogle Scholar
  21. Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP (2009) Phylogenetic biome conservatism on a global scale. Nature 458(7239):754–756CrossRefPubMedGoogle Scholar
  22. Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Therap 138(3):333–408. doi: 10.1016/j.pharmthera.2013.01.016 CrossRefGoogle Scholar
  23. Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci 105(Suppl 1):11549–11555. doi: 10.1073/pnas.0801962105 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Douwes E, Crouch NR, Edwards TJ, Mulholland DA (2008) Regression analyses of southern African ethnomedicinal plants: informing the targeted selection of bioprospecting and pharmacological screening subjects. J Ethnopharmacol 119(3):356–364CrossRefPubMedGoogle Scholar
  25. Driskell AC, Ané C, Burleigh JG, McMahon MM, O'Meara BC, Sanderson MJ (2004) Prospects for building the tree of life from large sequence databases. Science 306(5699):1172–1174. doi: 10.1126/science.1102036 CrossRefPubMedGoogle Scholar
  26. Ekenäs C, Rosén J, Wagner S, Merfort I, Backlund A, Andreasen K (2009) Secondary chemistry and ribosomal DNA data congruencies in Arnica (Asteraceae). Cladistics 25(1):78–92CrossRefGoogle Scholar
  27. Etkin NL (1988) Ethnopharmocology: biobehavioral approaches in the anthropological study of indigenous medicines. Annu Rev Anthropol 17:23–42CrossRefGoogle Scholar
  28. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10CrossRefGoogle Scholar
  29. Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445(7129):757–760CrossRefPubMedGoogle Scholar
  30. Fritz SA, Purvis A (2010) Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv Biol 24(4):1042–1051. doi: 10.1111/j.1523-1739.2010.01455.x CrossRefPubMedGoogle Scholar
  31. Gaunt MW, Sall AA, Lamballerie X, Falconar AKI, Dzhivanian TI, Gould EA (2001) Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82(8):1867–1876CrossRefPubMedGoogle Scholar
  32. Gibbs R (1974) Chemotaxonomy of flowering plants, vol 1–4. McGill-Queen’s University Press, LondonGoogle Scholar
  33. Gottlieb OR (1982) Ethnopharmacology versus chemosystematics in the search for biologically active principles in plants. J Ethnopharmacol 6(2):227–238. doi: 10.1016/0378-8741(82)90005-8 CrossRefPubMedGoogle Scholar
  34. Gottlieb OR, Borin MRMB (2002) Quantitative chemobiology: a guide into the understanding of plant bioactivity. J Brazil Chem Soc 13:772–776CrossRefGoogle Scholar
  35. Gottlieb OR, Borin MRMB, de Brito NRS (2002) Integration of ethnobotany and phytochemistry: dream or reality? Phytochemistry 60(2):145–152. doi: 10.1016/S0031-9422(02)00088-2 CrossRefPubMedGoogle Scholar
  36. Harborne J, Turner B (1984) Plant chemosystematics. Academic, LondonGoogle Scholar
  37. Harris ESJ, Cao S, Schoville SD, Dong C, Wang W, Jian Z, Zhao Z, Eisenberg DM, Clardy J (2012) Selection for high oridonin yield in the chinese medicinal plant Isodon (Lamiaceae) using a combined phylogenetics and population genetics approach. PLoS One 7(11), e50753. doi: 10.1371/journal.pone.0050753 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Hart KH, Cox PA (2000) A cladistic approach to comparative ethnobotany. J Ethnobiol 20(2):303–325, Accessed 17 Dec 2013Google Scholar
  39. Inta A, Shengji P, Balslev H, Wangpakapattanawong P, Trisonthi C (2008) A comparative study on medicinal plants used in Akha’s traditional medicine in China and Thailand, cultural coherence or ecological divergence? J Ethnopharmacol 116(3):508–517. doi: 10.1016/j.jep.2007.12.015 CrossRefPubMedGoogle Scholar
  40. Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS One 2(3), e296. doi: 10.1371/journal.pone.0000296 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Kjer KM (2004) Aligned 18S and insect phylogeny. Syst Biol 53(3):506–514. doi: 10.1080/10635150490445922 CrossRefPubMedGoogle Scholar
  42. Larsen MM, Adsersen A, Davis AP, Lledó MD, Jäger AK, Rønsted N (2010) Using a phylogenetic approach to selection of target plants in drug discovery of acetylcholinesterase inhibiting alkaloids in Amaryllidaceae tribe Galantheae. Biochem Syst Ecol 38(5):1026–1034CrossRefGoogle Scholar
  43. Leal MC, Puga J, Serôdio J, Gomes NCM, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades – where and what are we bioprospecting? PLoS One 7(1), e30580. doi: 10.1371/journal.pone.0030580 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Leonti M, Sticher O, Heinrich M (2002) Medicinal plants of the Popoluca, México: organoleptic properties as indigenous selection criteria. J Ethnopharmacol 81(3):307–315. doi: 10.1016/S0378-8741(02)00078-8 CrossRefPubMedGoogle Scholar
  45. Leonti M, Fernando R, Sticher O, Heinrich M (2003) Medicinal flora of the Popoluca, Mexico: a botanical systematical perspective. Econ Bot 57(2):218–230. doi:10.1663/0013-0001(2003)057[0218:mfotpm];2CrossRefGoogle Scholar
  46. Leonti M, Cabras S, Eugenia Castellanos M, Challenger A, Gertsch J, Casu L (2013) Bioprospecting: evolutionary implications from a post-Olmec pharmacopoeia and the relevance of widespread Taxa. J Ethnopharmacol 147(1):92–107. doi: 10.1016/j.jep.2013.02.012 CrossRefPubMedGoogle Scholar
  47. Lucena RFP, Medeiros PM, Araújo EL, Alves AGC, Albuquerque UP (2012) The ecological apparency hypothesis and the importance of useful plants in rural communities from Northeastern Brazil: an assessment based on use value. J Environ Manag 96(1):106–115. doi: 10.1016/j.jenvman.2011.09.001 CrossRefGoogle Scholar
  48. Lukhoba CW, Simmonds MSJ, Paton AJ (2006) Plectranthus: a review of ethnobotanical uses. J Ethnopharmacol 103(1):1–24CrossRefPubMedGoogle Scholar
  49. Martiny AC, Treseder K, Pusch TG (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 830–838Google Scholar
  50. Medeiros PM, Soldati GT, Alencar NL, Vandebroek I, Pieroni A, Hanazaki N, Albuquerque UP (2011) The use of medicinal plants by migrant people: adaptation, maintenance, and replacement. Evid Based Complement Alternat Med 2012:11. doi: 10.1155/2012/807452 Google Scholar
  51. Moerman DE (1991) The medicinal flora of native North America: an analysis. J Ethnopharmacol 31(1):1–42. doi: 10.1016/0378-8741(91)90141-y CrossRefPubMedGoogle Scholar
  52. Moerman DE, Pemberton RW, Kiefer D, Berlin B (1999) A comparative analysis of five medicinal floras. J Ethnobiol 19(1):49–67Google Scholar
  53. Pacharawongsakda E, Yokwai S, Ingsriswang S (2009) Potential natural product discovery from microbes through a diversity-guided computational framework. Appl Microbiol Biotechnol 82(3):579–586. doi: 10.1007/s00253-008-1847-x CrossRefPubMedGoogle Scholar
  54. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884CrossRefPubMedGoogle Scholar
  55. Pieroni A, Quave CL (2005) Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: a comparison. J Ethnopharmacol 101(1–3):258–270. doi: 10.1016/j.jep.2005.04.028 CrossRefPubMedGoogle Scholar
  56. Prance GT, Balee W, Boom BM, Carneiro RL (1987) Quantitative ethnobotany and the case for conservation in ammonia. Conserv Biol 1(4):296–310CrossRefGoogle Scholar
  57. Prinzing A (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Soc Lond B Biol Sci 268(1483):2383–2389CrossRefGoogle Scholar
  58. Rønsted N, Savolainen V, Mølgaard P, Jäger AK (2008) Phylogenetic selection of Narcissus species for drug discovery. Biochem Syst Ecol 36(5–6):417–422. doi: 10.1016/j.bse.2007.12.010 CrossRefGoogle Scholar
  59. Rønsted N, Symonds M, Birkholm T, Brogger Christensen S, Meerow A, Molander M, Molgaard P, Petersen G, Rasmussen N, van Staden J, Stafford G, Jager A (2012) Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae. BMC Evol Biol 12(1):182PubMedCentralCrossRefPubMedGoogle Scholar
  60. Saslis-Lagoudakis CH, Clarke AC (2013) Ethnobiology: the missing link in ecology and evolution. Trends Ecol Evol 28:67–68CrossRefPubMedGoogle Scholar
  61. Saslis-Lagoudakis CH, Klitgaard BB, Forest F, Francis L, Savolainen V, Williamson EM, Hawkins JA (2011a) The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae). PLoS One 6(7), e22275PubMedCentralCrossRefPubMedGoogle Scholar
  62. Saslis-Lagoudakis CH, Williamson EM, Savolainen V, Hawkins JA (2011b) Cross-cultural comparison of three medicinal floras and implications for bioprospecting strategies. J Ethnopharmacol 135(2):476–487. doi: 10.1016/j.jep.2011.03.044 CrossRefPubMedGoogle Scholar
  63. Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ, Baral SR, Watson MF, Pendry CA, Hawkins JA (2012) Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proc Natl Acad Sci 109(39):15835–15840. doi: 10.1073/pnas.1202242109 PubMedCentralCrossRefPubMedGoogle Scholar
  64. Saslis-Lagoudakis CH, Hawkins JA, Greenhill SJ, Pendry CA, Watson MF, Tuladhar-Douglas W, Baral SR, Savolainen V (2014) The evolution of traditional knowledge: environment shapes medicinal plant use in Nepal. Proc R Soc B Biol Sci 281(1780)Google Scholar
  65. Smith WL, Wheeler WC (2006) Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. J Hered 97(3):206–217. doi: 10.1093/jhered/esj034 CrossRefPubMedGoogle Scholar
  66. Smith TF, Srinivasan A, Schochetman G, Marcus M, Myers G (1988) The phylogenetic history of immunodeficiency viruses. Nature 333(6173):573–575CrossRefPubMedGoogle Scholar
  67. Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402(6760):402CrossRefPubMedGoogle Scholar
  68. Thaker MN, Wang W, Spanogiannopoulos P, Waglechner N, King AM, Medina R, Wright GD (2013) Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat Biotechnol 31(10):922–927. doi: 10.1038/nbt.2685 CrossRefPubMedGoogle Scholar
  69. Trotter RT, Logan MH (1986) Informant consensus: a new approach for identifying potentially effective medicinal plants. In: Etkin NL (ed) Plants in indigenous medicine and diet. Biobehavioral approaches. Redgrave Publishing Co, Bedford Hills, New York, pp 91–112Google Scholar
  70. Unander DW, Webster GL, Blumberg BS (1995) Usage and bioassays in Phyllanthus (Euphorbiaceae). IV. Clustering of antiviral uses and other effects. J Ethnopharmacol 45(1):1–18. doi: 10.1016/0378-8741(94)01189-7 CrossRefPubMedGoogle Scholar
  71. Valussi M, Scirè A (2012) Quantitative ethnobotany and traditional functional foods. Nutrafoods 11(3):85–93. doi: 10.1007/s13749-012-0032-0 CrossRefGoogle Scholar
  72. Voeks RA (1990) Sacred leaves of Brazilian Candomble. Geogr Rev 80:118–131CrossRefGoogle Scholar
  73. Vossen T, Towns A, Ruysschaert S, Quiroz D, van Andel T (2014) Consequences of the trans-Atlantic slave trade on medicinal plant selection: plant use for cultural bound syndromes affecting children in Suriname and Western Africa. PLoS One 9(11), e112345. doi: 10.1371/journal.pone.0112345 PubMedCentralCrossRefPubMedGoogle Scholar
  74. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24(18):2098–2100. doi: 10.1093/bioinformatics/btn358 CrossRefPubMedGoogle Scholar
  75. Weckerle CS, Cabras S, Castellanos ME, Leonti M (2011) Quantitative methods in ethnobotany and ethnopharmacology: considering the overall flora—hypothesis testing for over- and underused plant families with the Bayesian approach. J Ethnopharmacol 137(1):837–843. doi: 10.1016/j.jep.2011.07.002 CrossRefPubMedGoogle Scholar
  76. Willson CJ, Manos PS, Jackson RB (2008) Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus Juniperus (Cupressaceae). Am J Bot 95(3):299–314CrossRefPubMedGoogle Scholar
  77. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64(1):3–19CrossRefPubMedGoogle Scholar
  78. Wink M, Mohamed GIA (2003) Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem Syst Ecol 31(8):897–917CrossRefGoogle Scholar
  79. Yessoufou K, Daru BH, Muasya AM (2014) Phylogenetic exploration of commonly used medicinal plants in South Africa. Mol Ecol Resour 15(2):405–413. doi: 10.1111/1755-0998.12310 CrossRefPubMedGoogle Scholar
  80. Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, Jia J, Tan Y, Cui C, Lin J, Tan C, Jiang Y, Chen Y (2011) Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc Natl Acad Sci 108(31):12943–12948. doi: 10.1073/pnas.1107336108 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • C. Haris Saslis-Lagoudakis
    • 1
  • Nina Rønsted
    • 1
  • Andrew C. Clarke
    • 2
  • Julie A. Hawkins
    • 3
  1. 1.Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
  2. 2.McDonald Institute for Archaeological ResearchUniversity of CambridgeCambridgeUK
  3. 3.School of Biological SciencesUniversity of ReadingReading, BerkshireUK

Personalised recommendations