Deriving Custom Post Types from Digital Mockups

  • Alfonso MuroloEmail author
  • Moira C. Norrie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9114)


Interface-driven approaches to web development often migrate digital mockups defining the presentation, structure and client-side functionality of a website to platforms such as WordPress that manage the content of the website and implement server-side functionality. In the case of data-intensive websites, generation of data types that manage the application-specific content is usually performed manually during the migration process. We propose an approach that allows WordPress custom post types to be derived based on an analysis of sample content used in digital mockups.


Digital mockups Data schemas Custom post types 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blakeley-Silver, T.: WordPress 2.8 Theme Design: Create Flexible, Powerful, and Professional Themes for Your WordPress Blogs and Websites. Packt Publishing Ltd. (2009)Google Scholar
  2. 2.
    Leone, S., de Spindler, A., Norrie, M.C.: A meta-plugin for bespoke data management in wordpress. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 580–593. Springer, Heidelberg (2012) Google Scholar
  3. 3.
    Norrie, M.C., Di Geronimo, L., Murolo, A., Nebeling, M.: The forgotten many? a survey of modern web development practices. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 290–307. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Newman, M.W., Lin, J., Hong, J.I., Landay, J.A.: DENIM: An Informal Web Site Design Tool inspired by Observations of Practice. Human-Computer Interaction 18(3) (2003)Google Scholar
  5. 5.
    Rivero, J.M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.: MockAPI: an agile approach supporting API-first web application development. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 7–21. Springer, Heidelberg (2013) Google Scholar
  6. 6.
    Rivero, J.M., Grigera, J., Rossi, G., Luna, E.R., Montero, F., Gaedke, M.: Mockup-Driven Development: Providing Agile Support for Model-Driven Web Engineering. Information and Software Technology 56(6) (2014)Google Scholar
  7. 7.
    Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-Intensive Web Applications. Morgan Kaufmann (2002)Google Scholar
  8. 8.
    Hennicker, R., Koch, N.: A UML-Based methodology for hypermedia design. In: Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 410–424. Springer, Heidelberg (2000) Google Scholar
  9. 9.
    Chang, C., Kayed, M., Girgis, M.R., Shaalan, K.F.: A Survey of Web Information Extraction Systems. IEEE Transactions on Knowledge and Data Engineering 18(10) (2006)Google Scholar
  10. 10.
    Adelberg, B.: NoDoSE a tool for semi-automatically extracting structured and semistructured data from text documents. In: Proc. 9th ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD). ACM (1998)Google Scholar
  11. 11.
    Chang, C., Lui, S.: IEPAD: information extraction based on pattern discovery. In: Proc. 10th Intl. Conf. on World Wide Web (WWW). ACM (2001)Google Scholar
  12. 12.
    Wang, J., Lochovsky, F.H.: Data extraction and label assignment for web databases. In: Proc. 12th Intl. Conf. on World Wide Web (WWW). ACM (2003)Google Scholar
  13. 13.
    Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: towards automatic data extraction from large web sites. In: Proc. 27th Intl. Conf. on Very Large Data Bases (VLDB). Morgan Kaufmann (2001)Google Scholar
  14. 14.
    Lu, Y., He, H., Zhao, H., Meng, W., Yu, C.: Annotating structured data of the deep web. In: Proc. 23rd Intl. Conf. on Data Engineering (ICDE). IEEE (2007)Google Scholar
  15. 15.
    Lu, Y., He, H., Zhao, H., Meng, W., Yu, C.: Annotating Search Results from Web Databases. IEEE Transactions on Knowledge and Data Engineering 25(3) (2013)Google Scholar
  16. 16.
    Hong, J.L., Siew, E., Egerton, S.: ViWER-Data extraction for search engine results pages using visual cue and dom tree. In: Proc. 1st Intl. Conf. on Information Retrieval & Knowledge Management (CAMP). IEEE (2010)Google Scholar
  17. 17.
    Liu, W., Meng, X., Meng, W.: Vide: A Vision-Based Approach for Deep Web Data Extraction. IEEE Transactions on Knowledge and Data Engineering 22(3) (2010)Google Scholar
  18. 18.
    Augsten, N., Böhlen, M., Gamper, J.: Approximate matching of hierarchical data using Pq-Grams. In: Proc. 31st Intl. Conf. on Very Large Data Bases (VLDB), VLDB Endowment (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations