Advertisement

SUMMA: A Common API for Linked Data Entity Summaries

  • Andreas Thalhammer
  • Steffen Stadtmüller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9114)

Abstract

Linked Data knowledge sources such as DBpedia, Freebase, and Wikidata currently offer large amounts of factual data. As the amount of information that can be grasped by users is limited, data summaries are needed. If a summary relates to a specific entity we refer to it as entity summarization. Unfortunately, in many settings, the summaries of entities are tightly bound to user interfaces. This practice poses problems for efficient and objective comparison and evaluation.

In this paper we focus on the question of how to make summaries exchangeable between multiple interfaces and multiple summarization services in order to facilitate evaluation and testing. We introduce SUMMA, an API definition that enables to decouple generation and presentation of summaries. It enables multiple consumers to retrieve summaries from multiple providers in a unified and lightweight way.

Keywords

Web APIs Entity summarization Evaluation Testing User interfaces Linked data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assaf, A., Atemezing, G.A., Troncy, R., Cabrio, E.: What are the important properties of an entity? In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC Satellite Events 2014. LNCS, vol. 8798, pp. 190–194. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  2. 2.
    Berners-Lee, T.: Read-Write Linked Data, August 2009. http://www.w3.org/DesignIssues/ReadWriteLinkedData.html (accessed November 26, 2012)
  3. 3.
    Pietriga, E., Bizer, C., Karger, D.R., Lee, R.: Fresnel: a browser-independent presentation vocabulary for RDF. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 158–171. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  4. 4.
    Harth, A.: VisiNav: A system for visual search and navigation on web data. Web Semantics: Science, Services and Agents on the World Wide Web 8(4) (2010)Google Scholar
  5. 5.
    Käfer, T., Harth, A.: Billion Triples Challenge data set (2014). http://km.aifb.kit.edu/projects/btc-2014/
  6. 6.
    Krummenacher, R., Norton, B., Marte, A.: Towards linked open services and processes. In: Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.) FIS 2010. LNCS, vol. 6369, pp. 68–77. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Qian, R.: Understand your world with bing (2013). http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
  8. 8.
    Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media (2007)Google Scholar
  9. 9.
    Roa-Valverde, A., Thalhammer, A., Toma, I., Sicilia, M.-A.: Towards a formal model for sharing and reusing ranking computations. In: Proc. of the 6th Intl. Workshop on Ranking in Databases In conjunction with VLDB 2012 (2012)Google Scholar
  10. 10.
    Singhal, A.: Introducing the knowledge graph: things, not strings (2012). http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
  11. 11.
    Speiser, S., Harth, A.: Integrating Linked Data and services with Linked Data Services. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170–184. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Stadtmüller, S., Speiser, S., Harth, A., Studer, R.: Data-fu: a language and an interpreter for interaction with read/write linked data. In: Conference on World Wide Web (2013)Google Scholar
  13. 13.
    Sydow, M., Pikua, M., Schenkel, R.: The notion of diversity in graphical entity summarisation on semantic knowledge graphs. Journal of Intelligent Information Systems, 1–41 (2013)Google Scholar
  14. 14.
    Thalhammer, A., Knuth, M., Sack, H.: Evaluating entity summarization using a game-based ground truth. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 350–361. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Thalhammer, A., Rettinger, A.: Browsing DBpedia entities with summaries. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC Satellite Events 2014. LNCS, vol. 8798, pp. 511–515. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Thalhammer, A., Toma, I., Roa-Valverde, A.J., Fensel, D.: Leveraging usage data for linked data movie entity summarization. In: Proc. of the 2nd Int. Ws. on Usage Analysis and the Web of Data (USEWOD2012) Co-Located with WWW 2012, Lyon, France, 2012, vol. abs/1204.2718 (2012)Google Scholar
  17. 17.
  18. 18.
    Verborgh, R., Steiner, T., Van Deursen, D., Van de Walle, R., Valls, J.G.: Efficient runtime service discovery and consumption with hyperlinked RESTdesc. In: Proceedings of the 7th International Conference on Next Generation Web Services Practices (NWeSP 2011), Salamanca, Spain (2011)Google Scholar
  19. 19.
  20. 20.
    Danyun, X., Cheng, G., Yuzhong, Q.: Preferences in wikipedia abstracts: Empirical findings and implications for automatic entity summarization. Inf. Process. Manage. 50(2), 284–296 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations