A Semantic Framework for Sequential Decision Making

  • Patrick PhilippEmail author
  • Maria Maleshkova
  • Achim Rettinger
  • Darko Katic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9114)


Current developments in the medical domain, not unlike many other sectors, are marked by the growing digitalisation of data, including patient records, study results, clinical guidelines or imagery. This trend creates the opportunity for the development of innovative decision support systems to assist physicians in making a diagnosis or preparing a treatment plan. To this end, complex tasks need to be solved, requiring one or more interpretation algorithms (e.g. image processors or classifiers) to be chosen and executed based on heterogeneous data. We, therefore, propose a semantic framework for sequential decision making and develop the foundations of a Linked agent who executes interpretation algorithms available as Linked APIs [9] on a data-driven, declarative basis [10] by integrating structured knowledge formalized in RDF and OWL, and having access to meta components for optimization. We evaluate our framework based on image processing of brain images and ad-hoc selection of surgical phase recognition algorithms.


Sequential decision making Linked APIs Meta learning Planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beygelzimer, A., Riabov, A., Sow, D., Turaga, D.S., Udrea, O.: Big data exploration via automated orchestration of analytic workflows. In: Proceedings of the 10th International Conference on Autonomic Computing (ICAC 13), pp. 153–158. USENIX, San Jose (2013)Google Scholar
  2. 2.
    Gemmeke, P., Maleshkova, M., Philipp, P., Götz, M., Weber, C., Kämpgen, B., Zelzer, S., Maier-Hein, K., Rettinger, A.: Using linked data and web apis for automating the pre-processing of medical images. COLD (ISWC) (2014)Google Scholar
  3. 3.
    Gil, Y., Gonzalez-Calero, P.A., Kim, J., Moody, J., Ratnakar, V.: A semantic framework for automatic generation of computational workflows using distributed data and component catalogues. Journal of Experimental & Theoretical Artificial Intelligence 23(4), 389–467 (2011)CrossRefGoogle Scholar
  4. 4.
    Katić, D., Wekerle, A.-L., Gärtner, F., Kenngott, H., Müller-Stich, B.P., Dillmann, R., Speidel, S.: Knowledge-driven formalization of laparoscopic surgeries for rule-based intraoperative context-aware assistance. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 158–167. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  5. 5.
    Kopecky, J., Gomadam, K., Vitvar, T.: hrests: An html microformat for describing restful web services. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT 2008, vol. 1, pp. 619–625. IEEE (2008)Google Scholar
  6. 6.
    van Otterlo, M.: The logic of adaptive behavior: knowledge representation and algorithms for adaptive sequential decision making under uncertainty in first-order and relational domains, vol. 192. Ios Press (2009)Google Scholar
  7. 7.
    Philipp, P., Katic, D., Maleshkova, M., Rettinger, A., Speidel, S., Wekerle, A.L., Kämpgen, B., Kenngott, H., Studer, R., Dillmann, R., Müller, B.: Towards cognitive pipelines of medical assistance algorithms. In: Proc. Computer Assisted Radiology and Surgery (CARS) (2015)Google Scholar
  8. 8.
    Philipp, P., Maleshkova, M., Götz, M., Weber, C., Kämpgen, B., Zelzer, S., Maier-Hein, K., Rettinger, A.: Automatisierte verarbeitung von bildverarbeitungsalgorithmen mit semantischen technologien. In: Bildverarbeitung fÃijr die Medizin (BVM), pp. 263–268 (2015)Google Scholar
  9. 9.
    Speiser, S., Harth, A.: Integrating linked data and services with linked data services. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170–184. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Stadtmüller, S., Speiser, S., Harth, A., Studer, R.: Data-fu: A language and an interpreter for interaction with read/write linked data. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1225–1236 (2013)Google Scholar
  11. 11.
    Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial Intelligence Review 18(2), 77–95 (2002)CrossRefGoogle Scholar
  12. 12.
    Wood, I., Vandervalk, B., McCarthy, L., Wilkinson, M.D.: OWL-DL domain-models as abstract workflows. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 56–66. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Patrick Philipp
    • 1
    Email author
  • Maria Maleshkova
    • 1
  • Achim Rettinger
    • 1
  • Darko Katic
    • 2
  1. 1.Institute AIFBKarlsruhe Insitute of TechnologyKarlsruheGermany
  2. 2.HISKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations