Advertisement

Leveraging Textual Information for Improving Decision-Making in the Business Process Lifecycle

  • Rainer Schmidt
  • Michael Möhring
  • Ralf-Christian Härting
  • Alfred Zimmermann
  • Jan Heitmann
  • Franziska Blum
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 39)

Abstract

Business process implementations fail, because requirements are elicited incompletely. At the same time, a huge amount of unstructured data is not used for decision-making during the business process lifecycle. Data from questionnaires and interviews is collected but not exploited because the effort doing so is too high. Therefore, this paper shows how to leverage textual information for improving decision making in the business process lifecycle. To do so, text mining is used for analyzing questionnaires and interviews.

Keywords

Decision-making Bpm Process interviews Text mining Context data 

References

  1. 1.
    Reijers, H.A.: Implementing BPM systems: The role of process orientation. Bus. Process Manag. J. 12(4). pp. 389–409 (2006)Google Scholar
  2. 2.
    Baumöl, U.: Cultural change in process management. In: Handbook on Business Process Management 2, pp. 487–514. Springer (2010)Google Scholar
  3. 3.
    Erol, S., Granitzer, M., Happ, S., Jantunen, S., Jennings, B., Johannesson, P., Koschmider, A., Nurcan, S., Rossi, D., Schmidt, R.: Combining BPM and social software: Contradiction or chance?. J. Softw. Maint. Evol. Res. Pract. 22(6–7), pp. 449–476 (2010)Google Scholar
  4. 4.
    Schmidt, R., Nurcan, S.: Augmenting BPM with Social Software. In: Business Process Management Workshop, pp. 201–206 (2010)Google Scholar
  5. 5.
    Kettinger, W.J., Teng, J.T., Guha, S.: Business process change: a study of methodologies, techniques, and tools. MIS Q, pp. 55–80 (1997)Google Scholar
  6. 6.
    Trkman, P.: The critical success factors of business process management. Int. J. Inf. Manag. 30(2), 125–134 (2010)CrossRefGoogle Scholar
  7. 7.
    Scheer, A.-W., Nüttgens, M.: ARIS architecture and reference models for business process management. In: van der Aalst, W., Desel, J., Hrsg, O.A.: Business Process Management, pp. 376–389. Springer, Berlin, Heidelberg (2000)Google Scholar
  8. 8.
    van Der Aalst, W.M.: Three good reasons for using a Petri-net-based workflow management system. In: Proceedings of the International Working Conference on Information and Process Integration in Enterprises (IPIC’96), pp. 179–201 (1996)Google Scholar
  9. 9.
    Oberweis, A., Schätzle, R., Stucky, W., Weitz, W., Zimmermann, G.: INCOME/WF: A Petri net based approach to workflow management. Wirtschaftsinformatik 97, pp. 557–580Google Scholar
  10. 10.
    Russell, N., van der Aalst, W.M., Ter Hofstede, A.H., Wohed, P.: On the suitability of UML 2.0 activity diagrams for business process modelling. In: Proceedings of the 3rd Asia-Pacific Conference on Conceptual Modelling-Volume 53, pp. 95–104 (2006)Google Scholar
  11. 11.
    Tan, A.-H.: Text mining: The state of the art and the challenges. In: Proceedings of the PAKDD 1999 Workshop on Knowledge Discovery from Advanced Databases, pp. 65–70 (1999)Google Scholar
  12. 12.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), pp. 37 (1996)Google Scholar
  13. 13.
    Simoudis, E.: Reality check for data mining. IEEE Intell. Syst. 11(5), 26–33 (1996)Google Scholar
  14. 14.
    Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)MATHGoogle Scholar
  15. 15.
    Van der Aalst, W.M., Weijters, A.: Process mining: a research agenda. Comput. Ind. 53(3), 231–244 (2004)CrossRefGoogle Scholar
  16. 16.
    Tan, P.-N., Blau, H., Harp, S., Goldman, R.: Textual data mining of service center call records. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 417–423 (2000)Google Scholar
  17. 17.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. The MIT Press, Cambridge (1996)Google Scholar
  18. 18.
    Chinosi, M., Trombetta, A.: BPMN: An introduction to the standard. Comput. Stand. Interfaces 34(1), pp. 124–134 (2012)Google Scholar
  19. 19.
    Naumann, J.D., Jenkins, A.M.: Prototyping: The new paradigm for systems development. Mis Q, pp 29–44 (1982)Google Scholar
  20. 20.
    Hotho, A., Nürnberger, A., Paaß, G.: A brief survey of text mining. Ldv Forum 20, 19–62 (2005)Google Scholar
  21. 21.
    Watson, R.T., Pitt, L.F., Kavan, C.B.: Measuring information systems service quality: Lessons from two longitudinal case studies. MIS Q, pp. 61–79 1(998)Google Scholar
  22. 22.
    Kohler, U., Kreuter, F., Data analysis using Stata. Stata Press (2005)Google Scholar
  23. 23.
    Ertek, G., Tapucu, D., Arın, İ., Text mining with rapid miner. Rapid Miner Data Min. Use Cases Bus. Anal. Appl. p. 241 (2013)Google Scholar
  24. 24.
    Rapid Miner Studio, Rapid Miner. Verfügbar unter: http://rapidminer.com/products/rapidminer-studio/. [Zugegriffen: 24 Feb 2014]
  25. 25.
    Miner, G., IV, J.E., Hill, T., Nisbet, R., Delen, D., Fast, A.: Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications. Academic Press (2012)Google Scholar
  26. 26.
    Leopold, E., Kindermann, J.: Text categorization with support vector machines. How to represent texts in input space? Mach. Learn. 46(1–3), pp. 423–444 (2002)Google Scholar
  27. 27.
    Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Springer, Heidelberg (1998)Google Scholar
  28. 28.
    van der Aalst, W., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T., Blickle, T., Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J.: Process mining manifesto. In: Business process management workshops, pp. 169–194 (2012)Google Scholar
  29. 29.
    Li, J., Wang, H.J., Zhang, Z., Zhao, J.L.: A policy-based process mining framework: mining business policy texts for discovering process models. Inf. Syst. E-Bus. Manag. 8(2), 169–188 (2010)Google Scholar
  30. 30.
    Linden, M., Felden, C., Chamoni, P.: Dimensions of business process intelligence. In Business process management workshops, pp. 208–213 (2011)Google Scholar
  31. 31.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Advanced Information Systems Engineering, pp. 482–493 (2011)Google Scholar
  32. 32.
    Leopold, H., Mendling, J., Polyvyanyy, A.: Generating natural language texts from business process models. In: Advanced Information Systems Engineering, pp. 64–79 (2012)Google Scholar
  33. 33.
    Leopold, H.: Natural Language in Business Process Models. Springer, Heidelberg (2013)Google Scholar
  34. 34.
    Ackermann, L., Volz, B.: Model [NL] generation: Natural language model extraction. In: Proceedings of the 2013 ACM workshop on Domain-specific modeling. 45–50 (2013)Google Scholar
  35. 35.
    Schumacher, P., Minor, M., Schulte-Zurhausen, E.: Extracting and enriching workflows from text. In: 2013 IEEE 14th International Conference on Information Reuse and Integration (IRI), pp. 285–292 (2013)Google Scholar
  36. 36.
    Team, S. et al.: Semantics of Business Vocabulary and Rules (SBVR), Technical Report dtc/06–03–02 (2006)Google Scholar
  37. 37.
    Thorne, C., Cardillo, E., Eccher, C., Montali, M., Calvanese, D.: Process fragment recognition in clinical documents. In: AI* IA 2013: Advances in Artificial Intelligence, pp. 227–238. Springer (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rainer Schmidt
    • 1
  • Michael Möhring
    • 2
  • Ralf-Christian Härting
    • 2
  • Alfred Zimmermann
    • 3
  • Jan Heitmann
    • 2
  • Franziska Blum
    • 2
  1. 1.Munich University of Applied SciencesMunichGermany
  2. 2.Aalen University of Applied SciencesAalenGermany
  3. 3.Reutlingen UniversityReutlingenGermany

Personalised recommendations