QoS-Aware Web Service Composition Using Quantum Inspired Particle Swarm Optimization

  • Chandrashekar Jatoth
  • G. R. GangadharanEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 39)


Quality of Service (QoS)-aware web service composition is one of the challenging problems in service oriented computing. Due to the seamless proliferation of web services, it is difficult to find an optimal web service during composition that satisfies the requirements of an user. In order to enable dynamic QoS-aware web service composition, we propose an approach based on Quantum inspired particle swarm optimization. Experimental results show that the proposed QIPSO-WSC has effective and efficient performance in terms of low optimality rate and reduced time complexity.


Web service composition Quality of service (QoS) Particle swarm optimization Quantum computing 


  1. 1.
    Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services composition: a decade’s overview. Inf. Sci. 280, 218–238 (2014)CrossRefGoogle Scholar
  2. 2.
    Strunk, A.: Qos-aware service composition: a survey. In: Proceedings of the IEEE 8th European Conference on Web Services, pp. 67–74 (2010)Google Scholar
  3. 3.
    Amiri, M., Serajzadeh, H.: Effective web service composition using particle swarm optimization algorithm. In: Proceedings of the Sixth International Symposium on Telecommunications, pp. 1190–1194 (2012)Google Scholar
  4. 4.
    Ludwig, S.: Applying particle swarm optimization to quality-of-service-driven web service composition. In: Proceedings of the IEEE 26th International Conference on Advanced Information Networking and Applications, pp. 613–620 (2012)Google Scholar
  5. 5.
    Jun, L., Weihua, G.: An environment-aware particle swarm optimization algorithm for services composition. In: Proceedings of the International Conference on Computational Intelligence and Software Engineering, pp. 1–4 (2009)Google Scholar
  6. 6.
    Bai, Q.: Analysis of particle swarm optimization algorithm. Comput. Inf. Sci. 3(1), 180–184 (2010)Google Scholar
  7. 7.
    Layeb, A.: A quantum inspired particle swarm algorithm for solving the maximum satisfiability problem. Int. J. Comb. Optim. Prob. Inform. 1(1), 13–23 (2010)Google Scholar
  8. 8.
    Yu, Y., Ma, H., Zhang, M.: An adaptive genetic programming approach to qos-aware web services composition. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1740–1747 (2013)Google Scholar
  9. 9.
    Liao, J., Liu, Y., Zhu, X., Xu, T., Wang, J.: Niching particle swarm optimization algorithm for service composition. In: Proceedings of the IEEE Global Telecommunications Conference, pp. 1–6 (2011)Google Scholar
  10. 10.
    Li, W., Yan-xiang, H.: Web service composition based on qos with chaos particle swarm optimization. In: Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing, pp. 1–4 (2010)Google Scholar
  11. 11.
    Xiangwei, L., Yin, Z.: Web service composition with global constraint based on discrete particle swarm optimization. In: Proceedings of the Second Pacific-Asia Conference on Web Mining and Web-based Application, pp. 183–186 (2009)Google Scholar
  12. 12.
    Zhao, X., Song, B., Huang, P., Wen, Z., Weng, J., Fan, Y.: An improved discrete immune optimization algorithm based on pso for qos-driven web service composition. Appl. Soft Comput. 12(8), 2208–2216 (2012)CrossRefGoogle Scholar
  13. 13.
    Parejo, J.A., Segura, S., Fernandez, P., Ruiz-Cortes, A.: Qos-aware web services composition using grasp with path relinking. Expert Syst. Appl. 41(9), 4211–4223 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhang, W., Chang, C., Feng, T., yi Jiang, H.: Qos-based dynamic web service composition with ant colony optimization. In: Proceedings of the IEEE 34th Annual Conference on Computer Software and Applications, pp. 493–502 (2010)Google Scholar
  15. 15.
    Kang, G., Liu, J., Tang, M., Xu, Y.: An effective dynamic web service selection strategy with global optimal qos based on particle swarm optimization algorithm. In: Proceedings of the IEEE 26th International Symposium Workshops Ph.D. Forum Parallel and Distributed Processing, pp. 2280–2285 (2012)Google Scholar
  16. 16.
    Liu, Y., Miao, H., Li, Z., Gao, H.: Qos-aware web services composition based on hqpso algorithm. In: Proceedings of the First International Conference on Computers, Networks, Systems and Industrial Engineering, pp. 400–405 (2011)Google Scholar
  17. 17.
    Bastos-Filho, C.J., Chaves, D.A., e Silva, F., Pereira, H.A., Martins-Filho, J.F.A.: Wavelength assignment for physical-layer-impaired optical networks using evolutionary computation. J. Opt. Commun. Networking 3(3), 178–188 (2011)Google Scholar
  18. 18.
    Precup, R.-E., David, R.-C., Petriu, E., Preitl, S., Paul, A.: Gravitational search algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity. In: Proceedings of the Soft Computing in Industrial Applications, vol. 96, pp. 141–150 (2011)Google Scholar
  19. 19.
    Mota, P., Campos, A.R., Neves-Silva, R.: First look at mcdm: Choosing a decision method. Adv. Smart Syst. Res. 3(2), 25–30 (2013)Google Scholar
  20. 20.
    El-Hefnawy, N.: Solving bi-level problems using modified particle swarm optimization algorithm. Int. J. Artif. Intell. 12(2), 88–101 (2014)Google Scholar
  21. 21.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  22. 22.
    Williams, C.P., Clearwater, S.H.: Explorations in Quantum Computing, vol. 1. Springer (1998)Google Scholar
  23. 23.
    Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behavior. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 325–331 (2004)Google Scholar
  24. 24.
    Xi, M., Sun, J., Xu, W.: An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl. Math. Comput. 205(2), 751–759 (2008)CrossRefzbMATHGoogle Scholar
  25. 25.
    Layeb, A.: A novel quantum inspired cuckoo search for knapsack problems. Int. J. Bio-Inspired Comput. 3(5), 297–305 (2011)CrossRefGoogle Scholar
  26. 26.
    Boussalia, B., Chaoui, A.: Optimizing qos-based web services composition by using quantum inspired cuckoo search algorithm. In: Proceedings of the Mobile Web Information Systems, vol. 8640, pp. 41–55. Springer (2014)Google Scholar
  27. 27.
    Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: Proceedings of the 17th International Conference on World Wide Web, pp. 795–804 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Development and Research in Banking TechnologyHyderabadIndia
  2. 2.SCISUniversity of HyderabadHyderabadIndia

Personalised recommendations