Advertisement

Applying Information Extraction for Abstracting and Automating CLI-Based Configuration of Network Devices in Heterogeneous Environments

  • A.  MartinezEmail author
  • M. Yannuzzi
  • J. López
  • R. Serral-Gracià
  • W. Ramirez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 607)

Abstract

With the continuous growth of current networks, configuration management has become increasingly relevant to the Information and Communication Technologies (ICT) field. Despite numerous standardization efforts, network administrators continue to rely on Command-Line Interfaces (CLIs) to modify and control the configuration of network devices. Nevertheless, network administrators must deal with the complexities that derive from this practice. On one hand, CLI-based configuration hinders the automation of network configuration tasks which are typically required in autonomic management. The only means for achieving a certain degree of automation is the creation of custom scripts, which is neither scalable nor practical, and is the reason why configuration management tasks are mainly performed through manual intervention. On the other hand, CLIs are generally both device and vendor-specific. In the context of heterogeneous network infrastructures—i.e., networks typically composed of multiple devices from different vendors—the use of several CLIs raises serious Operation, Administration and Management (OAM) issues. Moreover, multi-vendor configurations not only differ syntactically. Overall, the utilization of proprietary mechanisms allows neither reusing the configurations nor sharing knowledge consistently between vendors’ domains. Due to this heterogeneity, CLIs typically provide a help feature which is in turn a useful source of knowledge to enable semantic interpretation of a configuration space. The large amount of information a network administrator must learn and manage makes Information Extraction (IE) and other forms of natural language analysis of the Artificial Intelligence (AI) field key enablers for the network device configuration space. In this chapter we present an Ontology-Based Information Extraction (OBIE) System from the Command-Line Interface (CLI) of network devices. This system exploits natural language resources already available in CLIs in order to extract relevant information and automatically build the semantics of each configuration space. Overall, our solution provides network administrators with a simple tool which entirely automates and abstracts the complexities and heterogeneity of underlying configuration environments in order to reduce time and effort in the configuration of network devices. With such a tool, network administrators will no longer have to read hundreds of manuals, and configuration scripts can be automatically updated for new devices or system upgrades. We developed a prototype implementation to show how we complete the loop from the process of IE, to the configuration of network devices and final testing.

Keywords

Ontology-based information extraction Configuration management Autonomic management CLI Semantics 

References

  1. 1.
    Subramanian, M., Gonsalves, T.A., Rani, N.U.: Network Management: Principles and Practice. Dorling Kindersley, Noida (2010)Google Scholar
  2. 2.
    Case, J., Fedor, M., Schoffstall, M., Davin, J.: Simple network management protocol (SNMP). RFC 1157, Internet Engineering Task Force, pp. 1–36. May 1990Google Scholar
  3. 3.
    Caldwell, D., Gilbert, A., Gottlieb, J., Greenberg, A., Hjalmtysson, G., Rexford, J.: The Cutting EDGE of IP router configuration. SIGCOMM Comput. Commun. Rev. 34(1), 21–26 (2004)CrossRefGoogle Scholar
  4. 4.
    Lee, S., Wong, T., Kim, H.S.: To automate or not to automate: on the complexity of network configuration. In: IEEE International Conference on Communications, 2008, ICC ’08, pp. 5726–5731. May 2008Google Scholar
  5. 5.
    Chappell, C.: The business case for NETCONF/YANG in network devices. White Paper, 2013Google Scholar
  6. 6.
    Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A.: Network configuration protocol (NETCONF). In: RFC 6241, IETF, June 2011. http://tools.ietf.org/html/rfc6241
  7. 7.
    Cui, H., Zhang, B., Li, G., Gao, X., Li, Y.: Contrast analysis of NETCONF modeling languages: XML Schema, Relax NG and YANG. In: International Conference on Communication Software and Networks, 2009, ICCSN ’09, pp. 322–326, 2009Google Scholar
  8. 8.
    Chisholm, S., Clemm, A., Tjong, J.: Using XML Schema to define NETCONF Content. Internet-Draft, Network Working Group (2008)Google Scholar
  9. 9.
    Johansson, L.: NETCONF Configuration Data Modeling Using OWL. Internet-draft, Internet Engineering Task Force (IETF) (2008)Google Scholar
  10. 10.
    Bjorklund, M.: YANG—A data modeling language for the network configuration protocol (NETCONF). RFC 6020, IETF, Oct 2010Google Scholar
  11. 11.
    Nadeau, T., Gray, K.: SDN: software defined networks an authoritative review of network programmability technologies. O’Reilly Media, 2013Google Scholar
  12. 12.
    Kim, H., Feamster, N.: Improving network management with software defined networking. Commun. Mag. IEEE 51(2), 114–119 (2013)CrossRefGoogle Scholar
  13. 13.
    Open Networking Foundation. OpenFlow Switch Specification. Version 1.1.0. http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
  14. 14.
    Grassi, M., Nucci, M., Piazza, F.: Towards a semantically-enabled holistic vision for energy optimisation in smart home environments. In: IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 299–304, April 2011Google Scholar
  15. 15.
    Nucci, M., Grassi, M., Piazza, F.: Ontology-based device configuration and management for smart homes. Neural Nets and Surroundings. Smart Innovation, Systems and Technologies, vol. 19, pp. 301–310. Springer, Heidelberg 2013Google Scholar
  16. 16.
    Wicaksono, H., Schubert, V., Rogalski, S., Laydi, Y.A., Ovtcharova, J.: Ontology-driven requirements elicitation in product configuration systems. In: Hoda A., ElMaraghy (eds.) Enabling Manufacturing Competitiveness and Econoomic Sustainability, pp. 63–67. Springer, Heidelberg 2012Google Scholar
  17. 17.
    Colace, F., De Santo, M., Napoletano, P.: Product configurator: an ontological approach. In: Ninth International Conference on Intelligent Systems Design and Applications, 2009, ISDA ’09, pp. 908–912, Nov 2009Google Scholar
  18. 18.
    Dong, M., Yang, D., Su, L.: Ontology-based service product configuration system modeling and development. Expert Syst. Appl. 38(9), 11770–11786 (2011)CrossRefGoogle Scholar
  19. 19.
    Yang, D., Miao, R., Wu, H., Zhou, Y.: Product configuration knowledge modeling using ontology web language. Expert Syst. Appl. 36(3, Part 1):4399–4411 (2009)Google Scholar
  20. 20.
    Yang, D., Dong, M., Miao, R.: Development of a product configuration system with an ontology-based approach. Comput.-Aided Des. 40(8), 863–878 (2008)CrossRefGoogle Scholar
  21. 21.
    López De Vergara, J.E., Guerrero, A., Villagrá, V.A., Berrocal, J.: Ontology-based network management: study cases and lessons learned. J. Netw. Syst. Manage. 17(3), 234–254 (2009)CrossRefGoogle Scholar
  22. 22.
    López de Vergara, J. E., Villagrá, V. A., Fadón, C., González, J. M., Lozano, J. A., Álvarez Campana, M.: An autonomic approach to offer services in OSGi-based home gateways. Comput. Commun. 31(13):3049–3058 (2008) Special Issue: Self-organization and self-management in communications as applied to autonomic networksGoogle Scholar
  23. 23.
    Xu H., Xiao, D.: A common ontology-based intelligent configuration management model for IP network devices. In: First International Conference on Innovative Computing, Information and Control, 2006, ICICIC ’06, vol. 1, pp. 385–388. Aug 2006Google Scholar
  24. 24.
    Xu, H., Xiao, D.: Applying semantic web services to automate network management. In: 2nd IEEE Conference on Industrial Electronics and Applications, 2007, ICIEA, pp. 461–466. May 2007Google Scholar
  25. 25.
    Wong, A.K.Y., Ray, P., Parameswaran, N., Strassner, J.: Ontology mapping for the interoperability problem in network management. IEEE J. Sel. Areas Commun. 23(10), 2058–2068 (2005)CrossRefGoogle Scholar
  26. 26.
    Wimalasuriya, D.C., Dou, D.: Ontology-based information extraction: an introduction and a survey of current approaches. J. Inf. Sci. 36(3), 306–323 (2010)CrossRefGoogle Scholar
  27. 27.
    Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(12), 161–197 (1998)CrossRefzbMATHGoogle Scholar
  28. 28.
    ONDC: Ontology for network device configuration. http://www.netit.upc.edu/ondc, 2014
  29. 29.
    OWL web ontology language API. http://owlapi.sourceforge.net/
  30. 30.
  31. 31.
  32. 32.
    Tsatsaronis, G., Varlamis, I., Vazirgiannis, M.: Text relatedness based on a word thesaurus. J. Artif. Int. Res. 37(1), 1–40 (2010)zbMATHGoogle Scholar
  33. 33.
    Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Semant. web 2(1), 11–21 (2011)Google Scholar
  34. 34.
    Esuli, A., Sebastiani, F.: Evaluating information extraction. In: Agosti, Maristella, Ferro, Nicola, Peters, Carol, de Rijke, Maarten, Smeaton, Alan (eds.) Multilingual and Multimodal Information Access Evaluation. Lecture Notes in Computer Science, vol. 6360, pp. 100–111. Springer, Berlin Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Maynard, D.: Metrics for evaluation of ontology-based information. In: Proceedings of the WWW 2006 Workshop on Evaluation of Ontologies for the Web, 2006Google Scholar
  36. 36.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I.,Gorrell, G. , Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M.,Saggion, H., Petrak, J., Li, Y., Peters, W.: Text Processing with GATE, vol.6. 2011Google Scholar
  37. 37.
    Maynard, D., Peters, W., Li, Y.: Evaluating evaluation metrics for ontology-based applications: Infinite reflection. In: LREC, 2008Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A.  Martinez
    • 1
    Email author
  • M. Yannuzzi
    • 1
  • J. López
    • 2
  • R. Serral-Gracià
    • 1
  • W. Ramirez
    • 3
  1. 1.Networking and Information Technology Lab (NetIT Lab)Technical University of Catalonia (UPC)BarcelonaSpain
  2. 2.Department of Electronics and Communications TechnologiesAutonomous University of Madrid (UAM)MadridSpain
  3. 3.Advanced Network Architectures Lab (CRAAX)Technical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations