Heuristics for Apnea Episodes Recognition

  • Silvia GonzálezEmail author
  • José Ramón Villar
  • Javier Sedano
  • Joaquín Terán
  • María Luz Alonso Álvarez
  • Jerónimo González
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 368)


The Sleep Apnea is a respiratory disorder that affects a very significant number of patients, with different ages. One of the main consequences of suffering from apneas is the increase in the risk of stroke onsets. This study is concerned with an automatic identification of apnea episodes using a single triaxial accelerometer placed on the center of the chest. The relevance of this approach is that the devices for home recording and the analysis of the data can be highly reduced, increasing the patient comfort during the data gathering and reducing the time needed for the data analysis. A very simple heuristic has been found useful for identifying this type of episodes. For this study, normal subjects have been evaluated with this approach; it is expected that data from patients that might suffer apneas will be available soon, so the performance of this approach on real scenarios can be reported.


Obstructive Sleep Apnea Continuous Positive Airway Pressure Obstructive Sleep Apnea Syndrome Obstructive Sleep Apnea Patient Exhale Breath Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been funded by the Spanish Ministry of Science and Innovation, under projects TIN2011-24302 and TIN2014-56967-R, Fundación Universidad de Oviedo project FUO-EM-340-13, Junta de Castilla y León projects BIO/BU09/14 and SACYL 2013 GRS/822/A/13.


  1. 1.
    Lapi S, Lavorini F, Borgioli G, Calzolai M, Masotti L, Pistolesi M, Fontana GA (2014) Respiratory rate assessments using a dual-accelerometer device. Respir Physiol Neurobiol 191:60–66CrossRefGoogle Scholar
  2. 2.
    Stepnowsky CJ, Palau JJ, Zamora T, Ancoli-Israel S, Loredo JS (2011) Fatigue in sleep apnea: the role of depressive symptoms and self-reported sleep quality. Sleep Med 12:832–837CrossRefGoogle Scholar
  3. 3.
    Lloberes P, Durán-Cantolla J, Martínez-García MÁ, Marín JM, Ferrer A, Corral J, Masa JF, Parra O, Alonso-Álvarez ML, Terán-Santos J (2011) Diagnosis and treatment of sleep apnea-hypopnea syndrome. Arch Bronconeumol 47(3):143–156CrossRefGoogle Scholar
  4. 4.
    Badran M, Ayas N, Laher I (2014) Insights into obstructive sleep apnea research. Sleep Med 15:485–495CrossRefGoogle Scholar
  5. 5.
    Duran-Cantolla J, Barbe F, Rigau J, Oreja D, Martinez-Null C, Santaolalla CE (2013) A new vibratory postural device for the treatment of positional obstructive sleep apnea (OSA). A pilot study Sleep Med 14:e111CrossRefGoogle Scholar
  6. 6.
    Joosten SA, O’Driscoll DM, Berger PJ, Hamilton GS (2014) Supine position related obstructive sleep apnea in adults: pathogenesis and treatment. Sleep Med Rev 18:7–17CrossRefGoogle Scholar
  7. 7.
    Doukas C, Petsatodis T, Boukis C, Maglogiannis I (2012) Automated sleep breath disorders detection utilizing patient sound analysis. Biomed Signal Process Control 7:256–264CrossRefGoogle Scholar
  8. 8.
    Sannino G, Falco ID, Pietro GD (2014) Monitoring obstructive sleep apnea by means of a real-time mobile system based on the automatic extraction of sets of rules through differential evolution. J Biomed Inf 49:84–100CrossRefGoogle Scholar
  9. 9.
    Antonopoulou S, Loukides S, Papatheodorou G, Roussos C, Alchanatis M (2008) Airway inflammation in obstructive sleep apnea: Is leptin the missing link? Respir Med 102:1399–1405CrossRefGoogle Scholar
  10. 10.
    Al-Mardini M, Aloul F, Sagahyroon A, Al-Husseini L (2014) Classifying obstructive sleep apnea using smartphones. J Biomed Inf 52:251–259CrossRefGoogle Scholar
  11. 11.
    Rodes C, Chillrud S, Haskell W, Intille S, Albinali F, Rosenberger M (2012) Predicting adult pulmonary ventilation volume and wearing complianceby on-board accelerometry during personal level exposure assessments. Atmos Environ 57:126–137CrossRefGoogle Scholar
  12. 12.
    Peltokangas M, Verho J, Vehkaoja A (2012) Night-time ekg and hrv monitoring with bed sheet integrated textile electrodes. IEEE Trans Inf Technol Biomed 16:935–942CrossRefGoogle Scholar
  13. 13.
    Villar JR, Gonzlez S, Sedano J, Chira C, Trejo-Gabriel-Galan JM Improving human activity recognition and its application in early stroke diagnosis. Int J Neural Syst. DOI: 10.1142/S0129065714500361Google Scholar
  14. 14.
    Patiño J, Restrepo J, Rodríguez E (2005) Gases sanguíneos, fisiología de la respiración e insuficiencia respiratoria aguda. Editorial Medica Panamericana Sa deGoogle Scholar
  15. 15.
    Myrrha MAC, Vieira DSR, Moraes KS, Lage SM, Parreira VF, Britto RR (2013) Chest wall volumes during inspiratory loaded breathing in COPD patients. Respir Physiol Neurobiol 188:15–20CrossRefGoogle Scholar
  16. 16.
    Bsoul M, Minn H, Member S, Tamil L, Member S (2011) Apnea medassist: real-time sleep apnea monitor using single-lead ecg. In: IEEE Trans Inf Technol Biomed 416–427Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Silvia González
    • 2
    Email author
  • José Ramón Villar
    • 1
  • Javier Sedano
    • 2
  • Joaquín Terán
    • 3
  • María Luz Alonso Álvarez
    • 3
  • Jerónimo González
    • 4
  1. 1.Instituto Tecnológico de Castilla y León. C/López Bravo 70BurgosSpain
  2. 2.Computer Science DepartmentUniversity of OviedoOviedoSpain
  3. 3.Hospital Universitario de Burgos, Unidad de Sueño y Unidad de InvestigaciónBurgosSpain
  4. 4.Faculty of HumanitiesUniversity of BurgosBurgosSpain

Personalised recommendations