On the Selection of Key Features for Android Malware Characterization

  • Javier SedanoEmail author
  • Camelia Chira
  • Silvia González
  • Álvaro Herrero
  • Emilio Corchado
  • José Ramón Villar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 369)


Undoubtedly, mobile devices (mainly smartphones and tablets up to now) have become the new paradigm of user-computer interaction. The use of such gadgets is increasing to unexpected figures and, at the same time, the number of potential security risks. This paper focuses on the bad-intentioned Android apps, as it is still the most widely used operating systems for such devices. Accurate detection of this malware remains an open challenge, mainly due to the ever-changing nature of malware and the “open” distribution channel of Android apps through Google Play. Present work uses feature selection for the identification of those features that may help in characterizing mobile Android-based malware. Maximum Relevance Minimum Redundancy and genetic algorithms guided by information correlation measures have been applied to the Android Malware Genome (Malgenome) dataset, attaining interesting results on the most informative features for the characterization of representative families of existing Android malware.


Feature selection Max-Relevance Min-Redundancy criteria Information correlation coefficient Android Malware 



This research has been partially supported through the project of the Spanish Ministry of Economy and Competitiveness RTC-2014-3059-4. The authors would also like to thank the BIO/BU09/14 and the Spanish Ministry of Science and Innovation PID 560300-2009-11.


  1. 1.
  2. 2.
  3. 3.
    F-Secure: Q1 2014 Mobile Threat Report (2015)Google Scholar
  4. 4.
    Yajin, Z., Xuxian, J.: Dissecting android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy 5, 95–109 (2012)Google Scholar
  5. 5.
  6. 6.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)zbMATHGoogle Scholar
  7. 7.
    Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Armañanzas, R., Santafé, G., Pérez, A.: Machine learning in bioinformatics. Brief. Bioinform 7(1), 86–112 (2006)CrossRefGoogle Scholar
  8. 8.
    Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3(02), 185–205 (2005)CrossRefGoogle Scholar
  9. 9.
    Liu, H., Liu, L., Zhang, H.: Ensemble gene selection by grouping for microarray data classification. J. Biomed. Inform. 43(1), 81–87 (2010)CrossRefGoogle Scholar
  10. 10.
    Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRefGoogle Scholar
  11. 11.
    Hatami, N., Chira, C.: Diverse accurate feature selection for microarray cancer diagnosis. Intell. Data Anal. 17(4), 697–716 (2013)Google Scholar
  12. 12.
    Vinod, P., Laxmi, V., Gaur, M.S., Naval, S., Faruki, P.: MCF: MultiComponent Features for malware analysis. In: 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2013, pp. 1076–1081 (2013)Google Scholar
  13. 13.
    Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G.: On the automatic categorisation of android applications. In: 2012 IEEE Consumer Communications and Networking Conference (CCNC), pp. 149–153 (2012)Google Scholar
  14. 14.
    Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P., Álvarez, G.: PUMA: Permission Usage to Detect Malware in Android. In: Herrero Á., Snášel V., Abraham A., Zelinka I., Baruque B., Quintián H., Calvo J.L., Sedano J., Corchado E. (eds.) International Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions, vol. 189. Springer, Berlin, Heidelberg. pp. 289–298 (2013) Google Scholar
  15. 15.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Javier Sedano
    • 1
    Email author
  • Camelia Chira
    • 2
  • Silvia González
    • 1
  • Álvaro Herrero
    • 3
  • Emilio Corchado
    • 4
  • José Ramón Villar
    • 5
  1. 1.Instituto Tecnológico de Castilla Y LeónBurgosSpain
  2. 2.Department of Computer ScienceUniversity of Cluj-NapocaCluj-NapocaRomania
  3. 3.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  4. 4.Department of Computer Science and AutomationUniversity of SalamancaSalamancaSpain
  5. 5.Computer Science Department, ETSIMOUniversity of OviedoOviedoSpain

Personalised recommendations