Accuracy in Robot Generated Image Data Sets

  • Henrik AanæsEmail author
  • Anders Dahl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9127)


In this paper we present a practical innovation concerning how to achieve high accuracy of camera positioning, when using a 6 axis industrial robots to generate high quality data sets for computer vision. This innovation is based on the realization that to a very large extent the robots positioning error is deterministic, and can as such be calibrated away. We have successfully used this innovation in our efforts for creating data sets for computer vision. Since the use of this innovation has a significant effect on the data set quality, we here present it in some detail, to better aid others in using robots for image data set generation.


Image data set Performance evaluations robotics for imaging 


  1. 1.
    Aanæs, H., Dahl, A.L., Pedersen, K.S.: On recall rate of interest point detectors. In: 3DPVT 2010: Fifth International Symposium on 3D Data Processing, Visualization and Transmission (2010)Google Scholar
  2. 2.
    Aanæs, H., Dahl, A.L., Pedersen, K.S.: Interesting interest points. International Journal of Computer Vision 97, 18–35 (2012)CrossRefGoogle Scholar
  3. 3.
    Einarsson, P., Chabert, C.-F., Jones, A., Ma, W.-C., Lamond, B., Hawkins, T., Bolas, M.T., Sylwan, S., Debevec, P.E.: Relighting human locomotion with flowed reflectance fields. In: Rendering Techniques, pp. 183–194 (2006)Google Scholar
  4. 4.
    Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2) (2010)Google Scholar
  5. 5.
    Geusebroek, J.-M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library of object images. Int. J. Comput. Vision 61(1) (2005)Google Scholar
  6. 6.
    Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanaes, H.: Large scale multi-view stereopsis evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413 (2014)Google Scholar
  7. 7.
    Kim, S., Kim, S.D., Dahl, A., Conradsen, K., Jensen, R.R., Aanæs, H.: Multiple view stereo by reflectance modeling. In: 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (2012)Google Scholar
  8. 8.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vision 65 (2005)Google Scholar
  9. 9.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. Int. J. Comput. Vision 73(3) (2007)Google Scholar
  10. 10.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR, vol. 1, pp. 519–528 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations