Anatomically Correct Surface Recovery: A Statistical Approach

  • Rasmus R. Jensen
  • Jannik B. Nielsen
  • Rasmus Larsen
  • Rasmus R. Paulsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9127)

Abstract

We present a method for 3D surface recovery in partial surface scans. The method is based on an Active Shape Model, which is used to predict missing data. The model is constructed using a bootstrap framework, where an initially small collection of hand-annotated samples is used to fit to and register unknown samples, resulting in an extensive statistical model. The statistical recovery uses a multivariate point prediction, where the distribution of the points is given by the Active Shape Model. We show how missing data in a partial scan, once point correspondence is achieved, can be predicted using the learned statistics. A quantitative evaluation is performed on a data set of 10 laser scans of ear canal impressions with minimal noise and artificial holes. We also present a qualitative evaluation on authentic partial scans from an actual direct in ear scanner prototype. Compared to a state-of-the-art surface reconstruction algorithm, the presented method gives matching prediction results for the synthetic evaluation samples and superior results for the direct scanner data.

Keywords

Surface recovery Hole closing Multivariate statistics Shape modeling In ear scanning Active shape model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    3Shape, Copenhagen. http://www.3Shape.com
  2. 2.
    Projet MP3000, 3Dsystems. http://www.3DSystems.com/
  3. 3.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  4. 4.
    Blanz, V., Mehl, A., Vetter, T., Seidel, H.P.: A statistical method for robust 3D surface reconstruction from sparse data. In: Proc. 3D Data Processing, Visualization and Transmission, pp. 293–300 (2004)Google Scholar
  5. 5.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proc. 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)Google Scholar
  6. 6.
    Caselles, V., Haro, G., Sapiro, G., Verdera, J.: On geometric variational models for inpainting surface holes. Computer Vision and Image Understanding 111(3), 351–373 (2008)CrossRefGoogle Scholar
  7. 7.
    Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with smooth boundary conditions. Computer Aided Geometric Design 21(5), 427–446 (2004)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  9. 9.
    Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  10. 10.
    Hammond, P., Hutton, T., Allanson, J., Campbell, L., Hennekam, R., Holden, S., Patton, M., Shaw, A., Temple, I., Trotter, M., et al.: 3D analysis of facial morphology. American Journal of Medical Genetics Part A 126(4), 339–348 (2004)CrossRefGoogle Scholar
  11. 11.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc. Eurographics Symposium on Geometry Processing, pp. 61–70 (2006)Google Scholar
  12. 12.
    Kolluri, R., Shewchuk, J., O’Brien, J.: Spectral surface reconstruction from noisy point clouds. In: Proc. Eurographics Symposium on Geometry Processing, pp. 11–21 (2004)Google Scholar
  13. 13.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)CrossRefGoogle Scholar
  14. 14.
    Lanche, S., et al.: A statistical model of head asymmetry in infants with deformational plagiocephaly. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 898–907. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. The Computer Journal 7(4), 308–313 (1965)MATHCrossRefGoogle Scholar
  16. 16.
    Paulsen, R.R., Hilger, K.B.: Shape modelling using markov random field restoration of point correspondences. In: Taylor, C., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 1–12. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  17. 17.
    Paulsen, R., Larsen, R., Nielsen, C., Laugesen, S., Ersbøll, B.: Building and testing a statistical shape model of the human ear canal. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 373–380. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  18. 18.
    Paulsen, R., Bærentzen, J., Larsen, R.: Markov random field surface reconstruction. IEEE Trans. on Visualization and Computer Graphics 16(4), 636–646 (2010)CrossRefGoogle Scholar
  19. 19.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proc. 3D Digital Imaging and Modeling, pp. 145–152 (2001)Google Scholar
  20. 20.
    Verdera, J., Caselles, V., Bertalmio, M., Sapiro, G.: Inpainting surface holes. In: Proc. of International Conference on Image Processing, vol. 2 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rasmus R. Jensen
    • 1
  • Jannik B. Nielsen
    • 1
  • Rasmus Larsen
    • 1
  • Rasmus R. Paulsen
    • 1
  1. 1.DTU ComputeTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations