Advertisement

Discriminating Yogurt Microstructure Using Diffuse Reflectance Images

  • Jacob Skytte
  • Flemming Møller
  • Otto Abildgaard
  • Anders Dahl
  • Rasmus Larsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9127)

Abstract

The protein microstructure of many dairy products is of great importance for the consumers’ experience when eating the product. However, studies concerning discrimination between protein microstructures are limited. This paper presents preliminary results for discriminating different yogurt microstructures using hyperspectral (500-900nm) diffuse reflectance images (DRIs) – a technique potentially well suited for inline process control. Comparisons are made to quantified measures of the yogurt microstructure observed through confocal scanning laser microscopy (CSLM). The output signal from both modalities is evaluated on a \(2^4\) factorial design covering four common production parameters, which significantly change the chemistry and the microstructure of the yogurt. It is found that the DRIs can be as discriminative as the CSLM images in certain cases, however the performance is highly governed by the chemistry of the sample. Also, the DRIs shows better correlation to the CSLM images and are more discriminative when considering shorter wavelengths.

Keywords

Confocal scanning laser microscopy Optical technique Hyperspectral Protein microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muir, D.D., Hunter, E.A.: Sensory evaluation of fermented milks: vocabulary development and the relations between sensory properties and composition and between acceptability and sensory properties. International Journal of Dairy Technology 45(3), 73–80 (1992)CrossRefGoogle Scholar
  2. 2.
    Folkenberg, D., Dejmek, P., Skriver, A., Ipsen, R.: Relation between sensory texture properties and exopolysaccharide distribution in set and in stirred yoghurts produced with different starter cultures. Journal of Texture Studies 36(2), 174–189 (2005)CrossRefGoogle Scholar
  3. 3.
    Lee, W., Lucey, J.: Formation and physical properties of yogurt. Asian-Australasian Journal of Animal Sciences 23(9), 1127–1136 (2010)CrossRefGoogle Scholar
  4. 4.
    Lucey, J.: Formation and physical properties of milk protein gels. Journal of Dairy Science 85(2), 281–294 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    O’Callaghan, D.J., O’Donnell, C., Payne, F.: Review of systems for monitoring curd setting during cheesemaking. International Journal of Dairy Technology 55(2), 65–74 (2002)CrossRefGoogle Scholar
  6. 6.
    Castillo, M.: Cutting time prediction methods in cheese making. In: Encyclopedia of Agricultural, Food, and Biological Engineering, pp. 1–7 (2006)Google Scholar
  7. 7.
    Skytte, J.L., Nielsen, O.H.A., Andersen, U., Møller, F., Carstensen, J.M., Dahl, A.B., Larsen, R.: Monitoring optical changes during milk acidification using hyperspectral diffuse reflectance images. In revision (2014)Google Scholar
  8. 8.
    Skytte, J.L., Ghita, O., Whelan, P.F., Andersen, U., ller, F.M., Dahl, A.B., Larsen, R.: Evaluation of yogurt microstructure using confocal laser scanning microscopy and image analysis. Journal of Food Science (in press, 2015)Google Scholar
  9. 9.
    Lucey, J., Munro, P., Singh, H.: Effects of heat treatment and whey protein addition on the rheological properties and structure of acid skim milk gels. International Dairy Journal 9(3), 275–279 (1999)CrossRefGoogle Scholar
  10. 10.
    Nielsen, O.H.A., Dahl, A.L., Larsen, R., Møller, F., Nielsen, F.D., Thomsen, C.L., Aanæs, H., Carstensen, J.M.: Supercontinuum light sources for hyperspectral subsurface laser scattering. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 327–337. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    Carstensen, J.M., Møller, F., Frisvad, J.L.: Online monitoring of food processes using subsurface laser scattering. In: Advances in Process Analytics and Control Technologies, pp. 5–7 (2009)Google Scholar
  12. 12.
    Walstra, P., Walstra, P., Wouters, J.T., Geurts, T.J.: Dairy science and technology, 2nd edn. CRC Press (2010)Google Scholar
  13. 13.
    Martelli, F., Del Bianco, S., Ismaelli, A., Zaccanti, G.: Light propagation through biological tissue and other diffusive media: theory, solutions, and software. SPIE Press (2010)Google Scholar
  14. 14.
    Nielsen, O.H.A., Subash, A.A., Nielsen, F.D., Dahl, A.B., Skytte, J.L., Andersson-Engels, S., Khoptyar, D.: Spectral characterisation of dairy products using photon time-of-flight spectroscopy. Journal of Near Infrared Spectroscopy 21(5), 375–383 (2013)CrossRefGoogle Scholar
  15. 15.
    Prince, S.J.: Computer vision: models, learning, and inference. Cambridge University Press (2012)Google Scholar
  16. 16.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes 3rd edition: The art of scientific computing. Cambridge University Press (2007)Google Scholar
  17. 17.
    Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., Tibshirani, R.: The elements of statistical learning, 2nd edn. Springer (2009)Google Scholar
  18. 18.
    Mie, G.: Contribution to the optical properties of turbid media, in particular of colloidal suspensions of metals. Ann. Phys. (Leipzig) 25, 377–452 (1908)zbMATHCrossRefGoogle Scholar
  19. 19.
    Claesson, O., Nitschmann, H.: Optical investigation of the rennet clotting of milk. Acta Agriculturae Scandinavica 7(4), 341–360 (1957)CrossRefGoogle Scholar
  20. 20.
    O’Callaghan, D.J., O’Donnell, C., Payne, F.: A comparison of on-line techniques for determination of curd setting time using cheesemilks under different rates of coagulation. Journal of Food Engineering 41(1), 43–54 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jacob Skytte
    • 1
  • Flemming Møller
    • 2
  • Otto Abildgaard
    • 1
  • Anders Dahl
    • 1
  • Rasmus Larsen
    • 1
  1. 1.DTU Compute, Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.DuPont Nutrition Biosciences ApSAarhusDenmark

Personalised recommendations