A Modular and Flexible Network Architecture for Smart Grids

  • Stefano Tennina
  • Dionysis Xenakis
  • Mattia Boschi
  • Marco Di Renzo
  • Fabio Graziosi
  • Christos Verikoukis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9143)


The nowadays power grid deployed and used in every Country worldwide has served relatively well in providing a seamless unidirectional power supply of electricity. Nevertheless, today a new set of challenges is arising, such as the depletion of primary energy resources, the diversification of energy generation and the climate change. This paper proposes recent advancements in this field by introducing SMART-NRG, a Marie Curie project which involves academic and industrial partners from three EU Countries. The project aims to propose new technologies to meet the specific requirements of smart grids applications. In particular, in this paper, a modular and flexible system architecture is presented to face with the challenges imposed by the different application scenarios.


Smart grids Wireless networks System requirements 



This research has been funded by the European Commission as part of the SMART-NRG project (FP7-PEOPLE-2013-IAPP Grant number 612294).


  1. 1.
    Gungor, V.C., et al.: Smart grid technologies: communication technologies and standards. IEEE TII 7(4), 529–539 (2011)MathSciNetGoogle Scholar
  2. 2.
    Kayastha, N.: Smart grid sensor data collection, communication, and networking: a tutorial. Wireless Comms. Mobile Comp. 14(11), 1055–1087 (2014)CrossRefGoogle Scholar
  3. 3.
    Fang, X., et al.: Smart grid” the new and improved power grid: a survey. IEEE Comms. Surv. Tutorials 14(4), 944–980 (2012)CrossRefGoogle Scholar
  4. 4.
    Communications, E. (ed.) M2M - Beyond Connectivity Special Report, vol. Q3. European Communications (2012)Google Scholar
  5. 5.
    SMART-NRG: an industry-academia partnerships and pathways for smart energy networks (2014).
  6. 6.
    Wenpeng, L.: Advanced metering infrastructure. South. Power Sys. Tech. 3(2), 6 (2009)Google Scholar
  7. 7.
    Palensky, P., et al.: Demand side management: demand response, intelligent energy systems, and smart loads. IEEE TII 7(3), 381–388 (2011)Google Scholar
  8. 8.
    Alagoz, B., et al.: A user-mode distributed energy management architecture for smart grid applications. Energy 44(1), 167–177 (2012)CrossRefGoogle Scholar
  9. 9.
    Wissner, M.: The smart grid-a saucerful of secrets? Appl. Energy 88(7), 2509–2518 (2011)CrossRefGoogle Scholar
  10. 10.
    Dong, Q., et al.: Distributed demand and response algorithm for optimizing social-welfare in smart grid. In: IEEE IPDPS, pp. 1228–1239 (2012)Google Scholar
  11. 11.
    Xenakis, D., et al.: Mobility management for femtocells in lte-advanced: key aspects and survey of handover decision algorithms. IEEE Comms. Surv. Tutorials 16(1), 64–91 (2014)CrossRefGoogle Scholar
  12. 12.
    Gungor, V.C., et al.: Opportunities and challenges of wireless sensor networks in smart grid. IEEE TII 57(10), 3557–3564 (2010)Google Scholar
  13. 13.
    Kolias, C., Kambourakis, G., Stavrou, A., Gritzalis, S.: Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset. IEEE Comms. Surv. Tutorials PP, 1 (2015). doi: 10.1109/COMST.2015.2402161 CrossRefGoogle Scholar
  14. 14.
    Gharavi, H., Hu, B.: Multigate communication network for smart grid. Proc. of the IEEE 99(6), 1028–1045 (2011)CrossRefGoogle Scholar
  15. 15.
    Ahlswede, R., et al.: Network information flow. IEEE Trans. Inf. Theor. 46(4), 1204–1216 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Elias, P., et al.: A note on the maximum flow through a network. IRE Trans. Inf. Theor. 2(4), 117–119 (1956)CrossRefGoogle Scholar
  17. 17.
    Omnet++ 4.x discrete event simulator (2015).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefano Tennina
    • 1
  • Dionysis Xenakis
    • 2
  • Mattia Boschi
    • 1
  • Marco Di Renzo
    • 3
  • Fabio Graziosi
    • 1
  • Christos Verikoukis
    • 4
  1. 1.WEST Aquila S.r.l.L’AquilaItaly
  2. 2.Department of Informatics and TelecommunicationsUniversity of AthensAthensGreece
  3. 3.Laboratory of Signals and Systems (L2S)CNRS - SUPELEC - University Paris-SudParisFrance
  4. 4.Department of ElectronicUniversity of BarcelonaBarcelonaSpain

Personalised recommendations