# Wireless Autonomous Robot Evacuation from Equilateral Triangles and Squares

• J. Czyzowicz
• E. Kranakis
• D. Krizanc
• L. Narayanan
• J. Opatrny
• S. Shende
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9143)

## Abstract

Consider an equilateral triangle or square with sides of length $$1$$. A number of robots starting at the same location on the perimeter or in the interior of the triangle or square are required to evacuate from an exit which is located at an unknown location on its perimeter. At any time the robots can move at identical speed equal to $$1$$, and they can cooperate by communicating with each other wirelessly. Thus, if a robot finds the exit it can broadcast “exit found” to the remaining robots which then move in a straight line segment towards the exit to evacuate. Our task is to design robot trajectories that minimize the evacuation time of the robots, i.e., the time the last robot evacuates from the exit. Designing such optimal algorithms turns out to be a very demanding problem and even the case of equilateral triangles turns out to be challenging.

We design optimal evacuation trajectories (algorithms) for two robots in the case of equilateral triangles for any starting position and for squares for starting positions on the perimeter. It is shown that for an equilateral triangle, three or more robots starting on the perimeter cannot achieve better evacuation time than two robots, while there exist interior starting points from which three robots evacuate faster than two robots. For the square, three or more robots starting at one of the corners cannot achieve better evacuation time than two robots, but there exist points on the perimeter of the square such that three robots starting from such a point evacuate faster than two robots starting from this same point. In addition, in either the equilateral triangle or the square it can be shown that a simple algorithm is asymptotically optimal (in the number $$k$$ of robots, as $$k \rightarrow \infty$$), provided that the robots start at the centre of the corresponding domain.

## Keywords

Evacuation Mobile robots Square Triangle Wireless communication

## References

1. 1.
Ahlswede, R., Wegener, I.: Search Problems. Wiley, New York (1987)
2. 2.
Albers, S., Henzinger, M.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)
3. 3.
Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32(1), 123–143 (2002)
4. 4.
Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. International Series in Operations Research and Management Science, Vol. 55. Springer, Heidelberg (2003)
5. 5.
Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. Theoret. Comput. Sci. 410(52), 5515–5528 (2009)
6. 6.
Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Providence (2011)
7. 7.
Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015) Google Scholar
8. 8.
Chung, T., Hollinger, G., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Robots 31(4), 299–316 (2011)
9. 9.
Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014) Google Scholar
10. 10.
Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Heidelberg (2015)
11. 11.
Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (FOCS 1991), pp. 298–303. IEEE (1991)Google Scholar
12. 12.
Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010)
13. 13.
Gluss, B.: An alternative solution to the lost at sea problem. Nav. Res. Logistics Q. 8(1), 117–122 (1961)
14. 14.
Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31(2), 577–600 (2001)
15. 15.
Kleinberg, J.: On-line search in a simple polygon. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 8–15. Society for Industrial and Applied Mathematics (1994)Google Scholar
16. 16.
Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2012) Google Scholar
17. 17.
Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)
18. 18.
Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. ACM (1998)Google Scholar

© Springer International Publishing Switzerland 2015

## Authors and Affiliations

• J. Czyzowicz
• 1
• E. Kranakis
• 2
• D. Krizanc
• 3
• L. Narayanan
• 4
• J. Opatrny
• 4
• S. Shende
• 5
1. 1.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
4. 4.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada
5. 5.Department of Computer ScienceRutgers UniversityCamdenUSA