Truthful Strategy and Resource Integration for Multi-tenant Data Center Demand Response

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9130)

Abstract

Data centers’ demand response (DR) program has been paid more and more attention recently. As an important component of data centers, multi-tenant data centers (also called “colocation”) play a significant role in the demand response, especially in the emergency demand response (EDR). In this paper, we focus on how the colocation can perform better in the EDR program. We formulate the “uncoordinated relationship” in the colocation which is the key problem affecting energy efficiency, and propose a reward system to motivate tenants to join the EDR program, and a truthful strategy is developed to ensure the authenticity of tenants’ information. For achieving the overall coordination, we integrate tenants’ resources to increase the colocation’s resource utilization and optimize the whole colocation’s energy efficiency, then devise two algorithms to solve the actual resource migration and integration problem. We analyze the complexity of allocation model and two algorithms. Experimental results show that our solution is practical and efficient.

Keywords

Colocation Emergency demand response Uncoordinated relationship Truthful strategy design Algorithm analysis 

References

  1. 1.
    Multi-tenant data centers need to play bigger energy efficiency role (2014). http://www.datacenterknowledge.com/archives/2014/08/26/data-center-energy-efficiency-role
  2. 2.
    Is cloud computing always greener? (2012). http://www.nrdc.org/energy/files/cloud-computing-efficiency-IB.pdf
  3. 3.
    Barroso, L.A., Hölzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 4(1), 1–108 (2009)CrossRefGoogle Scholar
  4. 4.
    Ren, S., Islam, M.: Colocation demand response: why do i turn off my servers. In: ICAC (2014)Google Scholar
  5. 5.
    Semeraro, G., Magklis, G., Balasubramonian, R., Albonesi, D.H., Dwarkadas, S., Scott, M.L.: Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling. In: Proceedings of the Eighth International Symposium on High-Performance Computer Architecture, pp. 29–40. IEEE (2002)Google Scholar
  6. 6.
    Hou, C., Zhang, F., Anta, A.F., Wang, L., Liu, Z.: A hop-by-hop energy efficient distributed routing scheme. ACM SIGMETRICS Perform. Eval. Rev. 41(3), 101–106 (2014)CrossRefGoogle Scholar
  7. 7.
    Abts, D., Marty, M.R., Wells, P.M., Klausler, P., Liu, H.: Energy proportional datacenter networks. ACM SIGARCH Comput. Architect. News 38(3), 338–347 (2010). ACMCrossRefGoogle Scholar
  8. 8.
    Huang, L., Jia, Q., Wang, X., Yang, S., Li, B.: Pcube: improving power efficiency in data center networks. In: 2011 IEEE International Conference on Cloud Computing (CLOUD), pp. 65–72. IEEE (2011)Google Scholar
  9. 9.
    Jin, X., Zhang, F., Hu, S., Liu, Z.: Risk management for virtual machines consolidation in data centers. In: 2013 IEEE Global Communications Conference (GLOBECOM), pp. 2872–2878. IEEE (2013)Google Scholar
  10. 10.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Oper. Syst. Rev. 37(5), 164–177 (2003)CrossRefGoogle Scholar
  11. 11.
    Beloglazov, A., Buyya, R.; Energy efficient resource management in virtualized cloud data centers. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp. 826–831. IEEE Computer Society (2010)Google Scholar
  12. 12.
    Mukherjee, T., Banerjee, A., Varsamopoulos, G., Gupta, S.K., Rungta, S.: Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers. Comput. Netw. 53(17), 2888–2904 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Wang, L., Zhang, F., Arjona Aroca, J., Vasilakos, A.V., Zheng, K., Hou, C., Li, D., Liu, Z.: Greendcn: a general framework for achieving energy efficiency in data center networks. IEEE J. Sel. Areas Commun. 32(1), 4–15 (2014)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Yao, Y., Wang, X., Lu, K., Cao, Q.: Carpo: correlation-aware power optimization in data center networks. In: INFOCOM: 2012 Proceedings IEEE, pp. 1125–1133. IEEE (2012)Google Scholar
  15. 15.
    Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., McKeown, N.: Elastictree: saving energy in data center networks. In: NSDI, vol. 10, pp. 249–264 (2010)Google Scholar
  16. 16.
    Shang, Y., Li, D., Xu, M.: Energy-aware routing in data center network. In: Proceedings of the First ACM SIGCOMM Workshop on Green Networking, pp. 1–8. ACM (2010)Google Scholar
  17. 17.
    Zhang, Y., Ansari, N.: Hero: hierarchical energy optimization for data center networks. In: 2012 IEEE International Conference on Communications (ICC), pp. 2924–2928. IEEE (2012)Google Scholar
  18. 18.
    Lin, M., Wierman, A., Andrew, L.L., Thereska, E.: Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Network. (TON) 21(5), 1378–1391 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Intelligent Information Processing, ICTCASBeijingChina
  3. 3.State Key Laboratory for Computer Architecture, ICTCASBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations