Advertisement

Neuro-Fuzzy Analysis of Atmospheric Pollution

  • Ángel ArroyoEmail author
  • Verónica Tricio
  • Emilio Corchado
  • Álvaro Herrero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9121)

Abstract

Present study proposes the application of different soft-computing and statistical techniques to the characterization of atmospheric conditions in Spain. The main goal is to visualize and analyze the air quality in a certain region of Spain (Madrid) to better understand its circumstances and evolution. To do so, real-life data from three data acquisition stations are analysed. The main pollutants acquired by these stations are studied in order to research how the geographical location of these stations and the different seasons of the year are decisive in the behavior of air pollution. Different techniques for dimensionality reduction together with clustering techniques have been applied, in a combination of neural and fuzzy paradigms.

Keywords

Hybrid systems Clustering techniques Air quality Statistical models Artificial neural networks 

References

  1. 1.
    San José, R., Pérez, J.L., González, R.M.: An operational real-time air quality modelling system for industrial plants. Environ. Model Softw. 22, 297–307 (2007)Google Scholar
  2. 2.
    The Aporta project as a driver of the re-use of public sector information in Spain (2015). http://datos.gob.es/content/proyecto-aporta-como-impulsor-de-reutilizacion-de-informacion-del-sector-publico-espana
  3. 3.
    Corchado, E., Perez, J.C.: A three-step unsupervised neural model for visualizing high complex dimensional spectroscopic data sets. Pattern Anal. Appl. 14, 207–218 (2011)MathSciNetGoogle Scholar
  4. 4.
    Corchado, E., Arroyo, A., Tricio, V.: Soft computing models to identify typical meteorological days. Logic J. IGPL 19, 373–383 (2010)MathSciNetGoogle Scholar
  5. 5.
    Chattopadhyay, G., Chattopadhyay, S., Chakraborthy, P.: Principal component analysis and neurocomputing-based models for total ozone concentration over different urban regions of India. Theoret. Appl. Climatol. 109, 221–231 (2011)Google Scholar
  6. 6.
    Glezakos, T.J., Tsiligiridis, T.A., Iliadis, L.S., Yialouris, C.P., Maris, F.P., Ferentinos, K.P.: Feature extraction for time-series data: an artificial neural network evolutionary training model for the management of mountainous watersheds. Neurocomputing 73, 49–59 (2009)CrossRefGoogle Scholar
  7. 7.
    Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisciplinary Rev.: Comput. Stat. 2, 433–459 (2010)Google Scholar
  8. 8.
    Li, X., Lin, S., Yan, S., Xu, D.: Discriminant locally linear embedding with high-order tensor data. IEEE Trans. Syst. Man, Cybern. Part B: Cybern. 38, 342–352 (2008)Google Scholar
  9. 9.
    Shao, C., Hu, H.: Extension of ISOMAP for imperfect manifolds. J. Comput. 7, 1780–1785 (2012)Google Scholar
  10. 10.
    Corchado, E., Han, Y., Fyfe, C.: Structuring global responses of local filters using lateral connections. J. Exp. Theor. Artif. Intell. 15, 473–487 (2003)zbMATHGoogle Scholar
  11. 11.
    Arroyo, A., Corchado, E., Tricio, V.: Atmospheric pollution analysis by unsupervised learning. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 767–772. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Jain, A.K., Maheswari, S.: Survey of recent clustering techniques in data mining. J. Curr. Comput. Sci. Technol 3, 72–78 (2013)Google Scholar
  13. 13.
    Kassomenos, P., Vardoulakis, S., Borge, R., Lumbreras, J., Papaloukas, C., Karakitsios, S.: Comparison of statistical clustering techniques for the classification of modelled atmospheric trajectories. Theoret. Appl. Climatol. 102, 1–12 (2010)Google Scholar
  14. 14.
    Pires, J.C.M., Sousa, S.I.V., Pereira, M.C., Alvim-Ferraz, M.C.M., Martins, F.G.: Management of air quality monitoring using principal component and cluster analysis—Part I: SO2 and PM10. Atmos. Environ. 42, 1249–1260 (2008)Google Scholar
  15. 15.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)MathSciNetGoogle Scholar
  16. 16.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572 (1901)Google Scholar
  17. 17.
    Oja, E.: Principal components, minor components, and linear neural networks. Neural Netw. 5, 927–935 (1992)Google Scholar
  18. 18.
    Oja, E.: Neural networks, principal components, and subspaces. Int. J. Neural Syst. 1, 61–68 (1989)MathSciNetGoogle Scholar
  19. 19.
    Corchado, E.F.C.: Connectionist techniques for the identification and suppression of interfering underlying factors. Int. J. Pattern Recognit Artif Intell. 17, 1447–1466 (2003)Google Scholar
  20. 20.
    Corchado, E., MacDonald, D., Fyfe, C.: Maximum and minimum likelihood Hebbian learning for exploratory projection pursuit. Data Min. Knowl. Disc. 8, 203–225 (2004)MathSciNetGoogle Scholar
  21. 21.
    Ding, C., He, X.: K-means clustering via principal component analysis, vol. 29 (2004)Google Scholar
  22. 22.
    Gao, X., Xie, W.: Advances in theory and applications of fuzzy clustering. Chin. Sci. Bull. 45, 961–970 (2000)zbMATHGoogle Scholar
  23. 23.
    Region of Madrid, Area Air Quality - Air Quality Network (2015). http://gestiona.madrid.org/azul_internet/html/web/ListaEstacionesAccion.icm?ESTADO_MENU=3_2
  24. 24.
  25. 25.
    Snelder, T.H., Dey, K.L., Leathwick, J.R.: A procedure for making optimal selection of input variables for multivariate environmental classifications. Conserv. Biol. 21, 365–375 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ángel Arroyo
    • 1
    Email author
  • Verónica Tricio
    • 2
  • Emilio Corchado
    • 3
  • Álvaro Herrero
    • 1
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  2. 2.Department of PhysicsUniversity of BurgosBurgosSpain
  3. 3.Departamento de Informática y AutomáticaUniversity of SalamancaSalamancaSpain

Personalised recommendations