Swarm Agent-Based Architecture Suitable for Internet of Things and Smartcities

  • Pablo ChamosoEmail author
  • Fernando De la Prieta
  • Francisco De Paz
  • Juan M. Corchado
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 373)


Smart cities are proposed as a medium-term option for all cities. This article aims to propose an architecture that allows cities to provide solutions to interconnect all their elements. The study case focuses in locating and optimized regulation of traffic in cities. However, thanks to the proposed structure and the applied algorithms, the architecture is scalable in size of the sensor network, in functionality or even in the use of resources. A simulation environment which is able to show the operation of the architecture in the same way that a real city would, is presented.


Agents Swarm intelligence Locating Systems Smart cities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bajo, J., Fraile, J.A., Pérez-Lancho, B., Corchado, J.M.: The THOMAS architecture in Home Care scenarios: A case study. Expert Systems with Applications 37(5), 3986–3999 (2010)CrossRefGoogle Scholar
  2. 2.
    Bin, W., Zhongzhi, S.: A clustering algorithm based on swarm intelligence. In: Proceedings of the 2001 International Conferences on Info-tech and Info-net, ICII 2001, Beijing, vol. 3, pp. 58–66. IEEE (2001)Google Scholar
  3. 3.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems (No. 1). Oxford University Press (1999)Google Scholar
  4. 4.
    Chamoso, P., Perez, A., Rodriguez, S., Corchado, J.M., Sempere, M., Rizo, R., Pujol, M.: Modeling Oil-Spill Detection with multirotor systems based on multi-agent systems. In: 2014 17th International Conference on Information Fusion (FUSION), pp. 1–8. IEEE (July 2014)Google Scholar
  5. 5.
    Daniel, F., Eriksson, J., Finne, N., Fuchs, H., Gaglione, A., Karnouskos, S., Voigt, T.: makeSense: Real-world Business Processes through Wireless Sensor Networks. In: CONET/UBICITEC, pp. 58–72 (April 2013)Google Scholar
  6. 6.
    de la Prieta, F., Pérez-Lancho, B., De Paz, J.F., Bajo, J., Corchado, J.M.: Ovamah: Multiagent-based adaptive virtual organizations. In: 12th International Conference on Information Fusion, FUSION 2009, pp. 990–997. IEEE (July 2009)Google Scholar
  7. 7.
    Marciniak, A., Kowal, M., Filipczuk, P., Korbicz, J.: Swarm Intelligence Algorithms for Multi-level Image Thresholding. In: Korbicz, J., Kowal, M. (eds.) Intelligent Systems in Technical and Medical Diagnostics. AISC, vol. 230, pp. 301–311. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. Machine Learning 82(1), 1–42 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Nam, T., Pardo, T.A.: Conceptualizing smart city with dimensions of technology, people, and institutions. In: Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, pp. 282–291. ACM (June 2011)Google Scholar
  10. 10.
    Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. KR 91, 473–484 (1991)MathSciNetGoogle Scholar
  11. 11.
    Renuka, N., Nan, N.C., Ismail, W.: Embedded RFID tracking system for hospital application using WSN platform. In: 2013 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), pp. 1–5. IEEE (September 2013)Google Scholar
  12. 12.
    Rodriguez, S., Julián, V., Bajo, J., Carrascosa, C., Botti, V., Corchado, J.M.: Agent-based virtual organization architecture. Engineering Applications of Artificial Intelligence 24(5), 895–910 (2011)CrossRefGoogle Scholar
  13. 13.
    Tatomir, B., Rothkrantz, L.: Hierarchical routing in traffic using swarm-intelligence. In: Intelligent Transportation Systems Conference, ITSC 2006, pp. 230–235. IEEE (September 2006)Google Scholar
  14. 14.
    Tatomir, B., Rothkrantz, L.J.M.: H-ABC: A scalable dynamic routing algorithm. Recent Advances in Artificial Life 5, 8 (2005) ISO 690 Google Scholar
  15. 15.
    Wooldridge, M.J.: Reasoning about rational agents. MIT Press (2000)Google Scholar
  16. 16.
    Zato, C., Villarrubia, G., Sánchez, A., Barri, I., Rubión, E., Fernández, A., Rebate, C., Cabo, J.A., Álamos, T., Sanz, J., Seco, J., Bajo, J., Corchado, J.M.: PANGEA – Platform for Automatic coNstruction of orGanizations of intElligent Agents. In: Omatu, S., Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 229–240. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pablo Chamoso
    • 1
    Email author
  • Fernando De la Prieta
    • 1
  • Francisco De Paz
    • 1
  • Juan M. Corchado
    • 1
  1. 1.Department of Computer Science and Automation ControlUniversity of SalamancaSalamancaSpain

Personalised recommendations