Designing Decision Trees for Representing Sustainable Behaviours in Agents

  • N. Sánchez-Maroño
  • A. Alonso-Betanzos
  • O. Fontenla-Romero
  • J. G. Polhill
  • T. Craig
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 372)

Abstract

Decisions made by workers in their daily routine have an environmental impact. The LOCAW project has analyzed the drivers and barriers for an employee to choose a particular option in large organizations. In this project, Agent-Based Models (ABM) seek to clarify interactions among relevant actors and provide insights into the necessary conditions to achieve more sustainable organizations. For theoretical and practical reasons, it was considered to use decision trees to represent the internal behavior of the agents in the model. This paper focuses on how to improve the generalization capabilities of these decision trees using feature selection and discretization techniques. The application of these techniques is intended to obtain simpler decision trees, but more accurate. Experimental results of three daily activities support the adequacy of the approach presented.

Keywords

Decision trees feature selection discretization agent-based modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehrentreich, N.: Agent-based modeling. Lecture Notes in Economics and Mathematical Systems 602 (2008)Google Scholar
  2. 2.
    Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. Journal of Simulation 4(3), 151–162 (2010)CrossRefGoogle Scholar
  3. 3.
    Sánchez-Maroño, N., Alonso-Betanzos, A., Fontenla-Romero, O., Brinquis-Núñez, C., Polhill, J., Craig, T., Dumitru, A., García-Mira, R.: An agent-based model for simulating environmental behavior in an educational organization. Neural Processing Letters (2015)Google Scholar
  4. 4.
    Macy, M.W., Willer, R.: From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 143–166 (2002)Google Scholar
  5. 5.
    Quinlan, J.R.: C4. 5: programs for machine learning, vol. 1. Morgan Kaufmann (1993)Google Scholar
  6. 6.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)CrossRefGoogle Scholar
  7. 7.
    Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection methods on synthetic data. Knowledge and Information Systems 34(3), 483–519 (2013)CrossRefGoogle Scholar
  8. 8.
    Hall, M.A.: Correlation-based feature selection for machine learning. PhD thesis, The University of Waikato (1999)Google Scholar
  9. 9.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique. Data Mining and Knowledge Discovery 6(4), 393–423 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Yang, Y., Webb, G.I.: Proportional k-interval discretization for naive-bayes classifiers. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 564–575. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • N. Sánchez-Maroño
    • 1
  • A. Alonso-Betanzos
    • 1
  • O. Fontenla-Romero
    • 1
  • J. G. Polhill
    • 2
  • T. Craig
    • 2
  1. 1.University of A CoruñaA CoruñaSpain
  2. 2.The James Hutton InstituteCraigiebucklerAberdeenUK

Personalised recommendations