Advertisement

A New Algorithm of Bayesian Model Averaging Based on SCE - UA Collection Averaging

  • Liu Jun-Hua
  • Zhang Hong-Qin
  • Zhang Cheng-Ming
  • Zhao Tianyu
  • Ma Jing
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 452)

Abstract

Bayesian Model Averaging (BMA) is a statistical method used for multi-model ensemble forecast system. Firstly, the likelihood function of BMA is improved by eliminating the explicit constraint, that the sum of weights is 1, and use SCE-UA for the minimization of its, which presents a new method for solving the Bayesian model averaging, that is the BMA-SCE-UA method. With three land surface models of soil moisture simulation test of multiple numerical model. By comparing the common Expectation Maximization (EM) method with the SCE-UA method, the results show that: SCE-UA method can improve the simulation performance of soil moisture in a large extent, and the soil moisture obtained by the BMA collection simulation and observation matches well, no matter from the amplitude variation and seasonal variability, which makes it possible that generating high accuracy data set of soil moisture with the method of BMA-SCE-UA and using multiple land surface models.

Keywords

Bayesian Model Averaging SCE-UA soil moisture optimization algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tian, X.J., Xie, Z.H., Wang, A.H., et al.: A new approach for Bayesian model averaging. China Earth Sci. (2011), doi:10.10007/s11430-011-4307-xGoogle Scholar
  2. 2.
    Ciccone, A., Jarociński, M.: Determinants of Economic Growth: Will Data Tell? American Economic Journal: Macroeconomics (2010) Zeugner, S.: Bayesian Model Averaging with BMS (2011) (forthcoming)Google Scholar
  3. 3.
    Vrugt, J.A., ter Braak, C.J.F., Diks, C.G.H., Robinson, B.A., Hyman, J.M., Higdon, D.: Accelerating Markov chain Monte Carlo simulation byself-adaptive differential evolution with randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. (2008a) (in press)Google Scholar
  4. 4.
    Vrugt, J.A., ter Braak, C.J.F., Clark, M.P., Hyman, J.M., Robinson, B.A.: Treatment of input uncertainty in hydrologic modeling: doing hydrology backwards with Markov Chain Monte Carlo simulation. Water Resour. Res. (2008b), doi:10.1029/2007WR006720Google Scholar
  5. 5.
    Wöhling, T., Vrugt, J.A.: Combining multi-objective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models. Water Resour. Res. (2008), doi:10.1029/2008WR007154Google Scholar
  6. 6.
    Ajami, N.K., Duan, Q., Sorooshian, S.: An integrated hydrologic Bayesian multimodel Combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res. 43, W01403 (2007), doi: 10.1029/2005WR004745Google Scholar
  7. 7.
    Raftery, A.E., Gneiting, T., Balabdaoui, F., et al.: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 133, 1155–1174 (2005)CrossRefGoogle Scholar
  8. 8.
    Ajami, N.K., Duan, Q., Gao, X., Sorooshian, S.: Multi-model combination techniques for hydrological forecasting: application to distributed model intercomparison project results. J. Hydrometeorol. 8, 755–768 (2006)CrossRefGoogle Scholar
  9. 9.
    Rajagopal, R., del Castillo, E.: Model-Robust Process Optimization Using Bayesian Model Averaging. Technometrics 47(2), 152–163 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Xie, H., Eheart, J.W., Chen, Y., et al.: An approach for improving the sampling efficiency in the Bayesian calibration of computationally expensive simulation models. Water Resour. Res. 45, W06419 (2009), doi:10.1029/2007WR006773Google Scholar
  11. 11.
    Tian, X.J., Xie, Z.H., Dai, A.G., et al.: A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature. J. Geophys. Res. 114, D16102 (2009), doi:10.1029/2008JD011600.CrossRefGoogle Scholar
  12. 12.
    Tian, X.J., Xie, Z.H., Dai, A.G., et al.: A microwave land data assimilation system: Scheme and preliminary evaluation over China. J. Geophys. Res. 115, D21113 (2010), doi:10.1029/2010JD014370.Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Liu Jun-Hua
    • 1
    • 2
  • Zhang Hong-Qin
    • 1
  • Zhang Cheng-Ming
    • 1
  • Zhao Tianyu
    • 3
  • Ma Jing
    • 1
  1. 1.College of Information Science and EngineeringShandong Agricultural UniversityTaianChina
  2. 2.Institute of Agricultural standards and Detecting Technology SAASJinanChina
  3. 3.Shandong South-North Water Diversion Corporation LimitedJinanChina

Personalised recommendations