AFDX Emulator for an ARINC-Based Training Platform

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9111)


AFDX (Avionics Full Duplex Switched Ethernet) is a standard communication network for avionics based on Ethernet links and special-purpose switches. This paper proposes an AFDX emulator based on standard Ethernet hardware (cards and switches) to build a low cost AFDX network for training or basic research purposes. We also propose the integration of the emulator within an ARINC-653 platform to allow the development of real-time Ada applications. Finally, a performance evaluation has been done in order to show the usability of the emulator.


AFDX network Distributed systems Partitioned systems Real-time Ada applications Education 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Airlines Electronic Engineering Committee, Aeronautical Radio INC: Avionics Application Software Standard Interface. ARINC Specification 653-1 (March 2006)Google Scholar
  2. 2.
    Airlines Electronic Engineering Committee, Aeronautical Radio INC: ARINC Specification 664 P7-1: Aircraft Data Network, Part 7 - Avionics Full Duplex Switched Ethernet Network, September 23, 2009Google Scholar
  3. 3.
    Masmano, M., Ripoll, I., Crespo, A., Metge, J.J.: Xtratum a hypervisor for safety critical embedded systems. In: Proc. of the 11th Real-Time Linux Workshop, Dresden, Germany (2009)Google Scholar
  4. 4.
    Aldea Rivas, M., González Harbour, M.: MaRTE OS: an Ada kernel for real-time embedded applications. In: Strohmeier, A., Craeynest, D. (eds.) Ada-Europe 2001. LNCS, vol. 2043, pp. 305–316. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Frances, F., Fraboul, C., Grieu, J.: Using network calculus to optimize the AFDX network. In: Proc. of the ERTS, Toulouse, France (2006)Google Scholar
  6. 6.
    Scharbarg, J.L., Ridouard, F., Fraboul, C.: A probabilistic analysis of end-to-end delays on an AFDX network. IEEE Transactions on Industrial Informatics 5(1), 38–49 (2009)CrossRefGoogle Scholar
  7. 7.
    Bauer, H., Scharbarg, J.L., Fraboul, C.: Improving the worst-case delay analysis of an AFDX network using an optimized trajectory approach. IEEE Transactions on Industrial Informatics 5(4), 521–533 (2010)CrossRefGoogle Scholar
  8. 8.
    Bauer, H., Scharbarg, J.L., Fraboul, C.: Applying trajectory approach with static priority queuing for improving the use of available AFDX resources. Journal of Real-Time Systems 48, 101–133 (2012)CrossRefGoogle Scholar
  9. 9.
    Gutiérrez, J.J., Palencia, J.C., González Harbour, M.: Holistic schedulability analysis for multipacket messages in AFDX networks. Journal of Real-Time Systems 50(2), 230–269 (2014). SpringerzbMATHCrossRefGoogle Scholar
  10. 10.
    Li, J., Guan, H., Yao, J., Zhu, G., Liu, X.: Performance enhancement and optimized analysis of the worst case end-to-end delay for AFDX networks. In: Proc. of the IEEE International Conference on Green Computing and Communications, GREENCOM, Besançon, France, pp. 301–310 (2012)Google Scholar
  11. 11.
    Zhang, J., Qiao, S., Li, D., Shi, G.: Modeling and simulation of EDF scheduling algorithm on AFDX switch. In: Proc. of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–4 (2011)Google Scholar
  12. 12.
    Dong, S., Xingxing, Z., Lina, D., Qiong, H.: The design and implementation of the AFDX network simulation system. In: Proc. of the International Conference on Multimedia Technology (ICMT), pp. 1–4 (2010)Google Scholar
  13. 13.
    Charara, H., Fraboul, C.: Modelling and simulation of an avionics full duplex switched ethernet. In: Proc. of the Advanced Industrial Conference on Telecommunications, pp. 207–212 (2005)Google Scholar
  14. 14.
    Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A., Sifakis, E.: Verification of an AFDX infrastructure using simulations and probabilities. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 330–344. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Hornig, R.: Avionics Full-Duplex Switched Ethernet for OMNeT++ (2012).
  16. 16.
    Calluaud, J.M., Cloury, E.: Simulation and test system for at least one item of equipment on an AFDX network. US Patent 7,406,050 (2008)Google Scholar
  17. 17.
    IEEE Std 802.1Q. Virtual Bridged Local Area Networks. Annex G, IEEE Document (2006)Google Scholar
  18. 18.
    Condor Engineering: AFDX/ARINC 664 tutorial (May 2005).
  19. 19.
    Nichols, K., Blake, S., Baker, F., Black, D.: Definition of the differentiated services field (DS field) in the Ipv4 and Ipv6 headers. RFC-2474, RFC Editor (1998)Google Scholar
  20. 20.
    Prisaznuk, P.J.: ARINC 653 role in Integrated Modular Avionics (IMA). In: Proc. of the 27th IEEE/AIAA Digital Avionics Systems Conference (DACS), pp. 1.E.5 1–10 (2008)Google Scholar
  21. 21.
    González Harbour, M., Gutiérrez, J.J., Drake, J.M., López, P., Palencia, J.C.: Modeling distributed real-time systems with MAST 2. Journal of Systems Architecture 56(6), 331–340 (2013). ElsevierCrossRefGoogle Scholar
  22. 22.
    MAST web page.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Software Engineering and Real-Time GroupUniversidad de CantabriaSantanderSpain

Personalised recommendations