Extracting Relations from Unstructured Text Sources for Music Recommendation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9103)


This paper presents a method for the generation of structured data sources for music recommendation using information extracted from unstructured text sources. The proposed method identifies entities in text that are relevant to the music domain, and then extracts semantically meaningful relations between them. The extracted entities and relations are represented as a graph, from which the recommendations are computed. A major advantage of this approach is that the recommendations can be conveyed to the user using natural language, thus providing an enhanced user experience. We test our method on texts from songfacts.com, a website that provides facts and stories about songs. The extracted relations are evaluated intrinsically by assessing their linguistic quality, as well as extrinsically by assessing the extent to which they map an existing music knowledge base. Finally, an experiment with real users is performed to assess the suitability of the extracted knowledge for music recommendation. Our method is able to extract relations between pair of musical entities with high precision, and the explanation of those relations to the user improves user satisfaction considerably.


  1. 1.
    Ballesteros, M., Nivre, J.: Going to the roots of dependency parsing. Comput. Linguist. 39(1), 5–13 (2013)CrossRefGoogle Scholar
  2. 2.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: International Joint Conferences on Artificial Intelligence, pp. 2670–2676 (2007)Google Scholar
  3. 3.
    Bohnet, B.: Very high accuracy and fast dependency parsing is not a contradiction. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 89–97 (2010)Google Scholar
  4. 4.
    Brewster, C., Alani, H., Dasmahapatra, S., Street, P., Wilks, C.B.Y.: Data driven ontology evaluation. In: International Conference on Language Resources and Evaluation (2004)Google Scholar
  5. 5.
    Bunescu, R.C., Mooney, R.J.: A shortest path dependency kernel for relation extraction. In: Proceedings of the Conference on HLT/EMNLP, pp. 724–731 (2005)Google Scholar
  6. 6.
    Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr, E., Mitchell, T.M.: Coupled semi-supervised learning for information extraction. In: Proceedings of the Third ACM WSDM, pp. 101–110 (2010)Google Scholar
  7. 7.
    Celma, Ò.: Music Recommendation and Discovery - The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Celma, Ò., Herrera, P.: A new approach to evaluating novel recommendations. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 179–186. ACM (2008)Google Scholar
  9. 9.
    Cohen, J.: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 70(4), 213 (1968)CrossRefGoogle Scholar
  10. 10.
    Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics (2004). http://dx.doi.org/10.3115/1218955.1219009
  11. 11.
    Dellschaft, K., Staab, S.: On how to perform a gold standard based evaluation of ontology learning. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 228–241. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  12. 12.
    Eichler, K., Hemsen, H., Neumann, G.: Unsupervised relation extraction from web documents. In: Proceedings of the 6th International Conference on Language Resources and Evaluation. ELRA (2008)Google Scholar
  13. 13.
    Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Empirical Methods in Natural Language Processing (2011)Google Scholar
  14. 14.
    Gamallo, P., Garcia, M., Fernández-Lanza, S.: Dependency-based open information extraction. In: Proceedings of the Joint Workshop on Unsupervised and Semi-Supervised Learning in NLP, ROBUS-UNSUP 2012, pp. 10–18. Association for Computational Linguistics, Stroudsburg (2012)Google Scholar
  15. 15.
    Gangemi, A.: A comparison of knowledge extraction tools for the semantic web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 351–366. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Geleijnse, G., Korst, J.H.: Web-based artist categorization. In: Proceedings of ISMIR, pp. 266–271 (2006)Google Scholar
  17. 17.
    Gruhl, D., Nagarajan, M., Pieper, J., Robson, C., Sheth, A.: Context and domain knowledge enhanced entity spotting in informal text. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 260–276. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  18. 18.
    Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., Weld, D.S.: Knowledge-based weak supervision for information extraction of overlapping relations. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT 2011, pp. 541–550. Association for Computational Linguistics, Stroudsburg (2011). http://dl.acm.org/citation.cfm?id=2002472.2002541
  19. 19.
    Augenstein, I., Maynard, D., Ciravegna, F.: Relation extraction from the web using distant supervision. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 26–41. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  20. 20.
    Marrero, M., Urbano, J., Sánchez-Cuadrado, S., Morato, J., Gómez-Berbís, J.M.: Named entity recognition: fallacies, challenges and opportunities. Comput. Stand. Interfaces 35(5), 482–489 (2013). http://linkinghub.elsevier.com/retrieve/pii/S0920548912001080
  21. 21.
    Mausam, Schmitz, M., Bart, R., Soderland, S., Etzioni, O.: Open language learning for information extraction. In: Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (2012)Google Scholar
  22. 22.
    Mendes, P.N., Jakob, M., García-silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems (2011)Google Scholar
  23. 23.
    Ostuni, V.C., Di Noia, T., Mirizzi, R., Di Sciascio, E.: A linked data recommender system using a neighborhood-based graph kernel. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 89–100. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  24. 24.
    Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  25. 25.
    Passant, A., Raimond, Y.: Combining social music and semantic web for music-related recommender systems. In: Social Data on the Web Workshop (2008)Google Scholar
  26. 26.
    Schedl, M., Widmer, G., Knees, P., Pohle, T.: A music information system automatically generated via web content mining techniques. Inf. Process. Manag. 47, 426–439 (2011)CrossRefGoogle Scholar
  27. 27.
    Serra, I., Girardi, R., Novais, P.: Evaluating techniques for learning non-taxonomic relationships of ontologies from text. Expert Syst. Appl. 41(11), 5201–5211 (2014)CrossRefGoogle Scholar
  28. 28.
    Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L., Nivre, J.: The CoNLL-2008 shared task on joint parsing of syntactic and semantic dependencies. In: Proceedings of the Twelfth Conference on Computational Natural Language Learning, pp. 159–177. Association for Computational Linguistics (2008)Google Scholar
  29. 29.
    Tesnière, L.: Elements de syntaxe structurale. Editions Klincksieck (1959)Google Scholar
  30. 30.
    Whitman, B., Lawrence, S.: Inferring descriptions and similarity for music from community metadata. In: Proceedings of the 2002 International Computer Music Conference, pp. 591–598 (2002)Google Scholar
  31. 31.
    Yosef, M.A., Hoffart, J., Bordino, I., Spaniol, M., Weikum, G.: AIDA: an online tool for accurate disambiguation of named entities in text and tables. In: Proceedings of the 37th International Conference on Very Large Databases, pp. 1450–1453 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mohamed Sordo
    • 1
  • Sergio Oramas
    • 2
  • Luis Espinosa-Anke
    • 2
  1. 1.Center for Computational ScienceUniversity of MiamiCoral GablesUSA
  2. 2.Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations