Supervised Machine Learning Techniques to Detect TimeML Events in French and English

  • Béatrice Arnulphy
  • Vincent Claveau
  • Xavier Tannier
  • Anne Vilnat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9103)

Abstract

Identifying events from texts is an information extraction task necessary for many NLP applications. Through the TimeML specifications and TempEval challenges, it has received some attention in recent years. However, no reference result is available for French. In this paper, we try to fill this gap by proposing several event extraction systems, combining for instance Conditional Random Fields, language modeling and k-nearest-neighbors. These systems are evaluated on French corpora and compared with state-of-the-art methods on English. The very good results obtained on both languages validate our approach.

Keywords

Event identification Information extraction TimeML TempEval CRF Language modeling English French 

References

  1. 1.
    Allen, J.F., Swift, M., de Beaumont, W.: Deep semantic analysis of text. In: Proceedings of the 2008 Conference on Semantics in Text Processing, STEP 2008, pp. 343–354. Association for Computational Linguistics, Stroudsburg (2008). http://dl.acm.org/citation.cfm?id=1626481.1626508
  2. 2.
    Arnulphy, B.: Désignations nominales des événements: Étude et extraction automatique dans les textes. Ph.D. thesis, Université Paris-Sud - École Doctorale d’Informatique de Paris Sud (EDIPS) / Laboratoire LIMSI (2012)Google Scholar
  3. 3.
    Arnulphy, B., Tannier, X., Vilnat, A.: Automatically generated Noun Lexicons for event extraction. In: Proceedings of the 13th International Conference on Intelligent Text Processing and Computational Linguistics (CicLing 2012), New Delhi, India, March 2012Google Scholar
  4. 4.
    Arnulphy, B., Tannier, X., Vilnat, A.: Event nominals: annotation guidelines and a manually annotated corpus in french. In: Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey, May 2012Google Scholar
  5. 5.
    Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: Real-world event identification on twitter. In: Fifth International AAAI Conference on Weblogs and Social Media (2011)Google Scholar
  6. 6.
    Bethard, S., Martin, J.H.: Identification of event mentions and their semantic class. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp. 146–154. Association for Computational Linguistics, Sydney (2006). http://www.aclweb.org/anthology/W/W06/W06-1618
  7. 7.
    Bittar, A.: Building a TimeBank for French: a reference corpus annotated according to the ISO-TimeML standard. Ph.D. thesis, Université Paris 7 - École doctorale de Sciences du Langage (2010)Google Scholar
  8. 8.
    Charniak, E.: A maximum-entropy-inspired parser. In: 1st Meeting of the North American Chapter of the Association for Computational Linguistics, pp. 132–139 (2000), http://www.aclweb.org/anthology/A00-2018
  9. 9.
    Grover, C., Tobin, R., Alex, B., Byrne, K.: Edinburgh-ltg: Tempeval-2 system description. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 333–336. Association for Computational Linguistics, Uppsala, July 2010. http://www.aclweb.org/anthology/S10-1074
  10. 10.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)Google Scholar
  11. 11.
    Jean-Louis, L., Besançon, R., Ferret, O.: Text segmentation and graph-based method for template filling in information extraction. In: 5th International Joint Conference on Natural Language Processing (IJCNLP 2011), Chiang Mai, Thailand, pp. 723–731 (2011)Google Scholar
  12. 12.
    Kumar Kolya, A., Ekbal, A., Bandyopadhyay, S.: Ju\_cse\_temp: A first step towards evaluating events, time expressions and temporal relations. In: Proceedings of the 5th International Workshop on Semantic Evaluation. pp. 345–350. Association for Computational Linguistics, Uppsala, July 2010. http://www.aclweb.org/anthology/S10-1077
  13. 13.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labe ling sequence data. In: International Conference on Machine Learning (ICML) (2001)Google Scholar
  14. 14.
    Lanagan, J., Smeaton, A.F.: Using twitter to detect and tag important events in live sports. In: Artificial Intelligence (2011)Google Scholar
  15. 15.
    Lavergne, T., Cappé, O., Yvon, F.: Practical very large scale CRFs. In: Proceedings the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 504–513. Association for Computational Linguistics, July 2010. http://www.aclweb.org/anthology/P10-1052
  16. 16.
    Llorens, H., Saquete, E., Navarro, B.: Tipsem (english and spanish): Evaluating crfs and semantic roles in tempeval-2. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 284–291. Association for Computational Linguistics, Uppsala, July 2010. http://www.aclweb.org/anthology/S10-1063
  17. 17.
    Ney, H., Essen, U., Kneser, R.: On structuring probabilistic dependencies in stochastic language modelling. Comput. Speech Lang. 8, 1–38 (1994)CrossRefGoogle Scholar
  18. 18.
    Parent, G., Gagnon, M., Muller, P.: Annotation d’expressions temporelles et d’événements en frana̧is. In: Béchet, F. (ed.) Traitement Automatique des Langues Naturelles (TALN 2008). Association pour le Traitement Automatique des Langues (ATALA) (2008)Google Scholar
  19. 19.
    Pustejovsky, J., Verhagen, M., Saurí, R., Littman, J., Gaizauskas, R., Katz, G., Mani, I., Knippen, R., Setzer, A.: TimeBank 1.2. Linguistic Data Consortium (2006). http://timeml.org/site/publications/timeMLdocs/timeml_1.2.1.html
  20. 20.
    Pustejovsky, J., Castaño, J., Ingria, R., Saurí R., Gaizauskas, R., Setzer, A., Katz, G.: Timeml: Robust specification of event and temporal expressions in text. In: IWCS-5, Fifth International Workshop on Computational Semantics, Tilburg University (2003)Google Scholar
  21. 21.
    Pustejovsky, J., Lee, K., Bunt, H., Romary, L.: ISO-TimeML: an international standard for semantic annotation. In: Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC 2010). European Language Resources Association (ELRA), Valletta (2010), http://aclweb.org/anthology-new/L/L10/
  22. 22.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufman Publishers (1993)Google Scholar
  23. 23.
    Saurí, R., Knippen, R., Verhagen, M., Pustejovsky, J.: Evita: a robust event recognizer for QA systems. In: Proceedings of the HLT 2005, Vancouver, Canada, October 2005Google Scholar
  24. 24.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of International Conference on New Methods in Language Processing, Manchester, UK (1994)Google Scholar
  25. 25.
    Tanguy, L., Hathout, N.: Webaffix : un outil d’acquisition morphologique dérivationnelle à partir du Web. In: Pierrel, J.M. (ed.) Actes de Traitement Automatique des Langues Naturelles (TALN 2002), vol. Tome I, pp. 245–254. ATILF, ATALA, Nancy, France, June 2002Google Scholar
  26. 26.
    UzZaman, N., Allen, J.: Trips and trios system for tempeval-2: extracting temporal information from text. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 276–283. Association for Computational Linguistics, Uppsala (2010). http://www.aclweb.org/anthology/S10-1062
  27. 27.
    UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verhagen, M., Pustejovsky, J.: Semeval-2013 task 1: Tempeval-3: evaluating time expressions, events, and temporal relations. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pp. 1–9. Association for Computational Linguistics, Atlanta, Georgia, USA (2013). http://www.aclweb.org/anthology/S13-2001
  28. 28.
    Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Katz, G., Pustejovsky, J.: Semeval-2007 task 15: tempeval temporal relation identification. In: Proceedings of the SemEval Conference (2007)Google Scholar
  29. 29.
    Verhagen, M., Saurí, R., Caselli, T., Pustejovsky, J.: Semeval-2010 task 13: Tempeval-2. In: Proceedings of the 5th International Workshop on Semantic Evaluation, ACL 2010, Uppsala, Sweden, pp. 57–62 (2010). http://polyu.academia.edu/TommasoCaselli/Papers/1114340/TempEval2_Evaluating_Events_Time_Expressions_and_Temporal_Relations

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Béatrice Arnulphy
    • 1
  • Vincent Claveau
    • 2
  • Xavier Tannier
    • 3
  • Anne Vilnat
    • 3
  1. 1.Inria - Rennes-Bretagne AtlantiqueRennesFrance
  2. 2.IRISA-CNRSRennesFrance
  3. 3.LIMSI-CNRSUniversity of Paris SudOrsayFrance

Personalised recommendations