Improved Parameters Updating Algorithm for the Detection of Moving Objects

  • Brahim Farou
  • Hamid Seridi
  • Herman Akdag
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 456)


The presence of dynamic scene is a challenging problem in video surveillance systems tasks. Mixture of Gaussian (MOG) is the most appropriate method to model dynamic background. However, local variations and the instant variations in the brightness decrease the performance of the later. We present in this paper a novel and efficient method that will significantly reduce MOG drawbacks by an improved parameters updating algorithm. Starting from a normalization step, we divide each extracted frame into several blocks. Then, we apply an improved updating algorithm for each block to control local variation. When a significant environment changes are detected in one or more blocs, the parameters of MOG assigned to these blocks are updated and the parameters of the rest remain the same. Experimental results demonstrate that the proposed approach is effective and efficient compared with state-of-the-art background subtraction methods.


Background subtraction Motion detection MOG Machine vision Videosurveillance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baf, F.E., Bouwmans, T., Vachon, B.: Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In: Computer Vision and Pattern Recognition (2009)Google Scholar
  2. 2.
    Caseiro, R., Henriques, J.F., Batista, J.: Foreground Segmentation via Background Modeling on Riemannian Manifolds. In: International Conference on Pattern Recognition, pp. 3570–3574 (2010)Google Scholar
  3. 3.
    Charoenpong, T., Supasuteekul, A., Nuthong, C.: Adaptive background modeling from an image sequence by using K-Means clustering (2010)Google Scholar
  4. 4.
    Cheng, F.C., Huang, S.C., Ruan, S.J.: Illumination-Sensitive Background Modeling Approach for Accurate Moving Object Detection. IEEE Transactions on Broadcasting 57, 794–801 (2011)CrossRefGoogle Scholar
  5. 5.
    Cristani, M., Bicegi, M., Murino, V.: Integrated Region-and Pixel-based Approach to Background Modeling (2002)Google Scholar
  6. 6.
    Cristani, M., Murino, V.: A spatial sampling mechanism for effective background subtraction. In: Computer Vision Theory and Applications, pp. 403–412 (2007)Google Scholar
  7. 7.
    Cristani, M., Murino, V.: Background Subtraction with Adaptive Spatio-Temporal Neighborhood Analysis. In: Computer Vision Theory and Applications, pp. 484–489 (2008)Google Scholar
  8. 8.
    Djouadi, A., Snorrason, G.F.D.: The Quality of Training Sample Estimates of the Bhattacharyya Coefficient. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 92–97 (1990)CrossRefGoogle Scholar
  9. 9.
    Doulamis, A., Kalisperakis, I., Stentoumis, C., Matsatsinis, N.: Self Adaptive background modeling for identifying persons’ falls. In: International Workshop on Semantic Media Adaptation and Personalization (2010)Google Scholar
  10. 10.
    Elgammal, A.M., Harwood, D., Davis, L.S.: Non-parametric Model for Background Subtraction (2000)Google Scholar
  11. 11.
    Friedman, N., Russell, S.J.: Image Segmentation in Video Sequences: A Probabilistic Approach. In: Uncertainty in Artificial Intelligence, pp. 175–181 (1997)Google Scholar
  12. 12.
    Hayman, E., Olof Eklundh, J.: Statistical Background Subtraction for a Mobile Observer. In: International Conference on Computer Vision, pp. 67–74 (2003)Google Scholar
  13. 13.
    Hedayati, M., Zaki, W.M.D.W., Hussain, A.: Real-time background subtraction for video surveillance: From research to reality. In: International Colloquium on Signal Processing & Its Applications (2010)Google Scholar
  14. 14.
    Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for real time tracking with shadow dectection (2001)Google Scholar
  15. 15.
    Kan, J., Li, K., Tang, J., Du, X.: Background modeling method based on improved multi-Gaussian distribution. In: International Conference on Computer Application and System Modeling (2010)Google Scholar
  16. 16.
    Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing 13, 1459–1472 (2004)CrossRefGoogle Scholar
  17. 17.
    Li, X., Jing, X.: FPGA based mixture Gaussian background modeling and motion detection 4, 2078–2081 (2011)Google Scholar
  18. 18.
    Martel-brisson, N., Zaccarin, A.: Learning and Removing Cast Shadows through a Multidistribution Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1133–1146 (2007)CrossRefGoogle Scholar
  19. 19.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian Computer Vision System for Modeling Human Interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 831–843 (2000)CrossRefGoogle Scholar
  20. 20.
    Power, P.W., Schoonees, J.A.: Understanding Background Mixture Models for Foreground Segmentation (2002)Google Scholar
  21. 21.
    Prati, A.: c, I.M., Trivedi, M.M., Cucchiara, R.: Detecting Moving Shadows: Formulation, Algorithms and EvaluationGoogle Scholar
  22. 22.
    Schindler, K., Wang, H.: Smooth Foreground-Background Segmentation for Video Processing (2006)Google Scholar
  23. 23.
    Seki, M., Okuda, H., Hashimoto, M., Hirata, N.: Object modeling using gaussian mixture model for infrared image and its application to vehicle detection. Journal of Robotics and Mechatronics 18(6), 738 (2006)Google Scholar
  24. 24.
    Setiawan, N.A., Ju Hong, S., Woon Kim, J., Woo Lee, C.: Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction (2006)Google Scholar
  25. 25.
    Sheng, Z.B., Cui, X.Y.: An adaptive learning rate GMM for background extraction. Optoelectronics Letters 4, 460–463 (2008)CrossRefGoogle Scholar
  26. 26.
    Stauffer, C., Grimson, W.E.L.: Adaptive Background Mixture Models for Real-Time Tracking. Computer Vision and Pattern Recognition 2, 2246–2252 (1999)Google Scholar
  27. 27.
    Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., Buhmann, J.M.: Topology Free Hidden Markov Models: Application to Background Modeling. In: International Conference on Computer Vision, pp. 294–301 (2001)Google Scholar
  28. 28.
    Suo, P., Wang, Y.: An improved adaptive background modeling algorithm based on Gaussian Mixture Model. In: International Conference on Signal Processing Proceedings (2008)Google Scholar
  29. 29.
    Wang, H., Suter, D.: A re-evaluation of mixture of Gaussian background modeling [video signal processing applications]. In: International Conference on Acoustics, Speech, and Signal Processing, vol. 2 (2005)Google Scholar
  30. 30.
    Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-Time Tracking of the Human Body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)CrossRefGoogle Scholar
  31. 31.
    Yu, J., Zhou, X., Qian, F.: Object kinematic model: A novel approach of adaptive background mixture models for video segmentation (2010)Google Scholar
  32. 32.
    Zang, Q., Klette, R.: Evaluation of an Adaptive Composite Gaussian Model in Video Surveillance (2003)Google Scholar
  33. 33.
    Zhang, L., Liang, Y.: Motion Human Detection Based on Background Subtraction. In: International Workshop on Education Technology and Computer Science (2010)Google Scholar
  34. 34.
    Zivkovic, Z., Heijden, F.V.D.: Recursive Unsupervised Learning of Finite Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 651–656 (2004)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Brahim Farou
    • 1
    • 2
  • Hamid Seridi
    • 2
  • Herman Akdag
    • 3
  1. 1.Computer Science DepartmentBadji Mokhtar-Annaba UniversityAnnabaAlgeria
  2. 2.LabSTICGuelma UniversityGuelmaAlgeria
  3. 3.LIASDParis 8 UniversitySaint-DenisFrance

Personalised recommendations