Advertisement

Analyzing Recommendations Interactions in Clinical Guidelines

Impact of Action Type Hierarchies and Causation Beliefs
  • Veruska ZamborliniEmail author
  • Marcos da Silveira
  • Cedric Pruski
  • Annette ten Teije
  • Frank van Harmelen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9105)

Abstract

Accounting for patients with multiple health conditions is a complex task that requires analysing potential interactions among recommendations meant to address each condition. Although some approaches have been proposed to address this issue, important features still require more investigation, such as (re)usability and scalability. To this end, this paper presents an approach that relies on reusable rules for detecting interactions among recommendations coming from various guidelines. It extends previously proposed models by introducing the notions of action type hierarchy and causation beliefs, and provides a systematic analysis of relevant interactions in the context of multimorbidity. Finally, the approach is assessed based on a case-study taken from the literature to highlight the added value of the approach.

Keywords

Clinical knowledge representation Combining medical guidelines Multimorbidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shekelle, P., Woolf, S., Grimshaw, J.M., Schünemann, H.J., Eccles, M.P.: Developing clinical practice guidelines: reviewing, reporting, and publishing guidelines; updating guidelines; and the emerging issues of enhancing guideline implementability and accounting for comorbid conditions in guideline development. Implementation Science: IS 7(1), 62 (2012)CrossRefGoogle Scholar
  2. 2.
    Jafarpour, B.: Ontology Merging using Semantically-defined Merge Criteria and OWL Reasoning Services: Towards Execution-time Merging of Multiple Clinical Workflows to Handle Comorbidity. PhD thesis, Dalhousie University (2013)Google Scholar
  3. 3.
    López-Vallverdú, J.A., Riaño, D., Collado, A.: Rule-based combination of comorbid treatments for chronic diseases applied to hypertension, diabetes mellitus and heart failure. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth 2012 and KR4HC 2012. LNCS (LNAI), vol. 7738, pp. 30–41. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Wilk, S., Michalowski, M., Tan, X., Michalowski, W.: Using First-Order Logic to Represent Clinical Practice Guidelines and to Mitigate Adverse Interactions. In: Miksch, S., Riano, D., ten Teije, A. (eds.) KR4HC 2014. LNCS, vol. 8903, pp. 45–61. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Piovesan, L., Molino, G., Terenziani, P.: An ontological knowledge and multiple abstraction level decision support system in healthcare. Decision Analytics 1(1), 8 (2014)CrossRefGoogle Scholar
  6. 6.
    Zamborlini, V., da Silveira, M., Pruski, C., ten Teije, A., van Harmelen, F.: Towards a conceptual model for enhancing reasoning about clinical guidelines: A case-study on comorbidity. In: Miksch, S., Riano, D., ten Teije, A. (eds.) KR4HC 2014. LNCS, vol. 8903, pp. 29–44. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Zamborlini, V., Hoekstra, R., da Silveira, M., Pruski, C., ten Teije, A., van Harmelen, F.: A Conceptual Model for Detecting Interactions among Medical Recommendations in Clinical Guidelines. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 591–606. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Zamborlini, V., Hoekstra, R., da Silveira, M., Pruski, C., ten Teije, A., van Harmelen, F.: Inferring Recommendation Interactions in Clinical Guidelines: Case-studies on Multimorbidity. Semantic Web Journal (2015 - Invited submission as extension of [7], Under Revision, Open Acess, http://www.semantic-web-journal.net/content/inferring-recommendation-interactions-clinical-guidelines-case-studies-multimorbidity
  9. 9.
    Chavez, M.L., Jordan, M.A., Chavez, P.I.: Evidence-based drug–herbal interactions. Life Sciences 78(18), 2146–2157 (2006)CrossRefGoogle Scholar
  10. 10.
    Piovesan, L., Anselma, L., Terenziani, P.: Temporal Detection of Guideline Interactions. In: Int. Conf. on Health Informatics (HEALTHINF), Lisbon (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Veruska Zamborlini
    • 1
    • 2
    Email author
  • Marcos da Silveira
    • 2
  • Cedric Pruski
    • 2
  • Annette ten Teije
    • 1
  • Frank van Harmelen
    • 1
  1. 1.Department of Computer ScienceVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Luxembourg Institute of Science and Technology - LISTLuxembourgLuxembourg, Europe

Personalised recommendations