Advertisement

TK-SK: Textual-Restricted \(K\) Spatial Keyword Query on Road Networks

  • Xiaopeng Kuang
  • Pengpeng Zhao
  • Victor S. Sheng
  • Jian Wu
  • Zhixu Li
  • Guanfeng Liu
  • Zhiming Cui
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9093)

Abstract

With the rapid development of GPS-enabled devices, spatial keyword query, considering both spatial proximity to a query location and the textual relevance to the query keywords, is applied to many real-world applications. In this context, we study a specific type of spatial keyword query Textual-restricted K Spatial Keyword query (TK-SK query), which returns the nearest \(k\) points of interest (POIs) whose textual description is not less than a specified textual relevance threshold and whose location is close to the query location. We further propose a baseline approach and two advanced approaches (a separated index approach and a hybrid index approach) with different indexing strategies to solve this problem. Our comprehensive experiments conducted on real spatial datasets clearly demonstrate the efficiency of our two advanced approaches.

Keywords

Spatial keyword query Hybrid index Road networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences 66(4), 614–656 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Zhong, R., Li, G., Tan, K.L., Zhou, L.: G-tree: an efficient index for knn search on road networks. In: Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, pp. 39–48. ACM (2013)Google Scholar
  3. 3.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. Proceedings of the VLDB Endowment 2(1), 337–348 (2009)CrossRefGoogle Scholar
  4. 4.
    Zhang, D., Chan, C.Y., Tan, K.L.: Processing spatial keyword query as a top-k aggregation query. In: Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, pp. 355–364. ACM (2014)Google Scholar
  5. 5.
    Rocha-Junior, J.B., Nørvåg, K.: Top-k spatial keyword queries on road networks. In: Proceedings of the 15th international conference on extending database technology, pp. 168–179. ACM (2012)Google Scholar
  6. 6.
    Khodaei, A., Shahabi, C., Li, C.: Hybrid indexing and seamless ranking of spatial and textual features of web documents. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 450–466. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Li, Z., Lee, K.C., Zheng, B., Lee, W.C., Lee, D.L., Wang, X.: Ir-tree: An efficient index for geographic document search. IEEE Transactions on Knowledge and Data Engineering 23(4), 585–599 (2011)CrossRefGoogle Scholar
  8. 8.
    Li, W., Guan, J., Zhou, S.: Efficiently evaluating range-constrained spatial keyword query on road networks. In: Han, W.-S., Lee, M.L., Muliantara, A., Sanjaya, N.A., Thalheim, B., Zhou, S. (eds.) DASFAA 2014. LNCS, vol. 8505, pp. 283–295. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  9. 9.
    De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: IEEE 24th International Conference on Data Engineering, ICDE 2008, 656–665. IEEE (2008)Google Scholar
  10. 10.
    Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient processing of top-k spatial keyword queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 205–222. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xiaopeng Kuang
    • 1
  • Pengpeng Zhao
    • 1
  • Victor S. Sheng
    • 2
  • Jian Wu
    • 1
  • Zhixu Li
    • 1
  • Guanfeng Liu
    • 1
  • Zhiming Cui
    • 1
  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.Computer Science DepartmentUniversity of Central ArkansasConwayUSA

Personalised recommendations