Advertisement

Transient Collisionally Excited X-ray Lasers Pumped with One Long and Two Short Pulses

  • D. Ursescu
  • G. Cojocaru
  • R. Ungureanu
  • R Banici
  • L. Ionel
  • S. Simion
  • R. Dabu
  • J. Tümmler
  • R. Jung
  • H. Stiel
  • Olivier Delmas
  • Moana Pittman
  • Olivier Guilbaud
  • Sophie Kazamias
  • Kevin Cassou
  • Julien Demailly
  • Olivier Neveu
  • Elsa Baynard
  • David Ros
  • Andrea Le Marec
  • Sameh Daboussi
  • Li Lu
  • A. Klisnick
  • P. Zeitoun
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 169)

Abstract

X-ray laser simulations based on Ehybrid code have shown that enhanced plasma x-ray laser emission can be achieved mastering the ionization dynamics and plasma temperature using one long and two short pulses (Ursescu and Ionel, J Optoelectron Adv Mat 12:48–51, 2010). In parallel, two simple methods to generate multiple short pulses for pumping x-ray lasers were reported in conjunction with x-ray laser developments. Five to ten fold enhancement in the emission of the silver x-ray laser was demonstrated using the newly developed pump methods, when compared with the traditional one, based on a long pulse followed by one short pump pulse. An overview of these recent experiments will be presented. The possible implementation of these novel x-ray laser pumping methods at Extreme Light Infrastructure—Nuclear Physics facility will be discussed.

Keywords

Short Pulse Multiple Pulse High Average Power Adiabatic Cool Chirp Pulse Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ursescu, D., Ionel, L.: Gain and ionization dynamics in transient, collisionaly excited x-ray lasers. J. Optoelectron. Adv. Mat. 12, 48–51 (2010)Google Scholar
  2. 2.
    Reagan, B.A., Berrill, M., Wernsing, K.A., Baumgarten, C., Woolston, M., Rocca, J.J.: High-average-power, 100-hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths. Phys. Rev. A. 89, 053820 (2014)Google Scholar
  3. 3.
    Daido, H.: Review of soft x-ray laser researches and developments. Rep. Prog. Phys. 65, 1513 (2002)Google Scholar
  4. 4.
    Nickles, P.V., Shlyaptsev, V.N., Kalachnikov, M., Schnrer, M., Will, I., Sandner, W.: Short pulse X-Ray laser at 32.6 nm based on transient gain in Ne-like titanium. Phys. Rev. Lett. 78, 2748–2751 (1997)Google Scholar
  5. 5.
    Shlyaptsev, V.N., Dunn, J., Moon, S., Smith, R., Keenan, R., Nilsen, J., Fournier, K.B., Kuba, J., Osterheld, A.L., Rocca, J.J.G., Luther, B.M., Wang, Y., Marconi, M.C.: Numerical studies of transient and capillary x-ray lasers and their applications. In: Fill, E., Suckewer, S. (eds.) Soft X-Ray Lasers and Applications V, vol.5197, pp.221–228. SPIE, Bellingham (2003)Google Scholar
  6. 6.
    Keenan, R., Dunn, J., Patel, P.K., Price, D.F., Smith, R.F., Shlyaptsev, V.N.: High-repetition-rate grazing-incidence pumped X-ray laser operating at 18.9 nm. Phys. Rev. Lett. 94, 103901 (2005)Google Scholar
  7. 7.
    Ursescu, D., Zimmer, D., Kuehl, T., Zielbauer, B., Pert, G.: Gain generation in the critical density region of a TCE XRL. In: Nickles, P., Janulewicz, K. (eds.) X-Ray Lasers 2006, Springer Proceedings in Physics, vol.115, pp.269–273 (2007)Google Scholar
  8. 8.
    Zimmer, D., Ros, D., Guilbaud, O., Habib, J., Kazamias, S., Zielbauer, B., Bagnoud, V., Ecker, B., Hochhaus, D.C., Aurand, B., Neumayer, P., Kuehl, T.: Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence. Phys. Rev. A. 82, 013803 (2010)Google Scholar
  9. 9.
    Luther, B.M., Wang, Y., Larotonda, M.A., Alessi, D., Berrill, M., Marconi, M.C., Rocca, J.J., Shlyaptsev, V.N.: Saturated high-repetition-rate 18.9 nm tabletop laser in nickel-like molybdenum. Opt. Lett. 30, 165–167 (2005)Google Scholar
  10. 10.
    Kim, H.T., Choi, I.W., Hafz, N., Sung, J.H., Yu, T.J., Hong, K., Jeong, T.M., Noh, Y., Ko, D., Janulewicz, K.A., Tmmler, J., Nickles, P.V., Sandner, W., Lee, J.: Demonstration of a saturated Ni-like Ag X-ray laser pumped by a single profiled laser pulse from a 10-Hz ti:sapphire laser system. Phys. Rev. A. 77, 023807 (2008)Google Scholar
  11. 11.
    Banici, R.A., Cojocaru, G.V., Ungureanu, R.G., Dabu, R., Ursescu, D., Stiel, H.: Pump energy reduction for a high gain ag x-ray laser using one long and two short pump pulses. Opt. Lett. 37, 5130–5132 (2012)Google Scholar
  12. 12.
    Cojocaru, G.V., Ungureanu, R.G., Banici, R.A., Ursescu, D., Delmas, O., Pittman, M., Guilbaud, O., Kazamias, S., Cassou, K., Demailly, J., Neveu, O., Baynard, E., Ros, D.: Thin film beam splitter multiple short pulse generation for enhanced Ni-like Ag X-ray laser emission. Opt. Lett. 39, 2246–2249 (2014)Google Scholar
  13. 13.
    Ursescu, D., Ionel, L., Banici, R., Dabu, R.: Multiple ultra-short pulses generation for collinear pump-probe experiments. J. Optoelectron. Adv. Mat. 12, 100–104 (2010)Google Scholar
  14. 14.
    Banici, R., Ursescu, D.: Spectral combination of ultrashort laser pulses. EPL 94, 44002 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • D. Ursescu
    • 1
    • 2
  • G. Cojocaru
    • 2
    • 3
    • 4
  • R. Ungureanu
    • 2
    • 3
  • R Banici
    • 2
  • L. Ionel
    • 2
  • S. Simion
    • 2
  • R. Dabu
    • 2
  • J. Tümmler
    • 5
  • R. Jung
    • 5
  • H. Stiel
    • 5
  • Olivier Delmas
    • 4
  • Moana Pittman
    • 4
    • 6
  • Olivier Guilbaud
    • 4
    • 6
  • Sophie Kazamias
    • 4
    • 6
  • Kevin Cassou
    • 6
  • Julien Demailly
    • 4
  • Olivier Neveu
    • 4
  • Elsa Baynard
    • 6
  • David Ros
    • 4
    • 6
  • Andrea Le Marec
    • 7
  • Sameh Daboussi
    • 8
  • Li Lu
    • 8
  • A. Klisnick
    • 7
  • P. Zeitoun
    • 8
  1. 1.ELI-NP DepartmentHoria Hulubei National Institute for Physics and Nuclear Engineering, (IFINHH)MagureleRomania
  2. 2.National Institute for Lasers, Plasma and Radiation Physics (INFLPR)MagureleRomania
  3. 3.Faculty of PhysicsUniversity of BucharestMagureleRomania
  4. 4.Laboratoire de Physique des Gaz et des Plasmas, Universite Paris-Sud (UMR-CNRS 8578)CedexFrance
  5. 5.Max-Born-Institut (MBI)BerlinGermany
  6. 6.LASERIXCentre Laser Universite Paris SudSudParis
  7. 7.Univ Paris 11, CNRS, ISMOOrsayFrance
  8. 8.Laboratoire d’Optique Appliquée, ENSTA ParisTech - CNRS UMR 7639 - École Polytechnique, Chemin de la HunièrePalaiseauFrance

Personalised recommendations