Advertisement

Stimulated X-Ray Raman Scattering with Free-Electron Laser Sources

  • N. RohringerEmail author
  • V. Kimberg
  • C. Weninger
  • A. Sanchez-Gonzalez
  • A. Lutman
  • T. Maxwell
  • C. Bostedt
  • S. Carron Monterro
  • A. O. Lindahl
  • M. Ilchen
  • R. N. Coffee
  • J. D. Bozek
  • J. Krzywinski
  • T. Kierspel
  • T. Mullins
  • J. Küpper
  • B. Erk
  • D. Rolles
  • O. D. Mücke
  • R. A. London
  • M. Purvis
  • D. Ryan
  • J. J. Rocca
  • R. Feifel
  • R. Squibb
  • V. Zhaunerchyk
  • C. Såthe
  • M. Agåker
  • M. Mucke
  • J. Nordgren
  • J. E. Rubensson
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 169)

Abstract

Stimulated electronic x-ray Raman scattering is the building block for several proposed x-ray pump probe techniques, that would allow the study of electron dynamics at unprecedented timescales. We present high spectral resolution data on stimulated electronic x-ray Raman scattering in a gas sample of neon using a self-amplified spontaneous emission x-ray free-electron laser. Despite the limited spectral coherence and broad bandwidth of these sources, high-resolution spectra can be obtained by statistical methods, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and the results of a recent experiment in CO are discussed.

Keywords

Stimulate Raman Scattering Spectral Coherence Auger Decay Electronic Wave Packet Linac Coherent Light Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Part of this work has been financially supported by the Swedish Research Council and the Knut and Alice Wallenberg Foundation, Sweden. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (Contract No. DE-AC52-07NA27344). Support for the work of M. P., D. R., and J. J. R. by the U.S. Department of Energy, Office of Science, Basic Energy Sciences AMOS Program is acknowledged.

References

  1. 1.
    Mukamel, S.: Principles of Nonlinear Optical Spectroscopy. Oxford University Press, New York (1999)Google Scholar
  2. 2.
    Tanaka, S., Mukamel, S.: Coherent x-ray raman spectroscopy: a nonlinear probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002)CrossRefADSGoogle Scholar
  3. 3.
    Harbola, U., Mukamel, S.: Coherent stimulated x-ray raman spectroscopy: Attosecond extension of resonant inelastic x-ray Raman scattering. Phys. Rev. B 79, 085108 (2009)CrossRefADSGoogle Scholar
  4. 4.
    Healion, D., Wang, H., Mukamel, S.: Simulation and visualization of attosecond stimulated x-ray Raman spectroscopy signals in trans-N-methylacetamide at the nitrogen and oxygen K-edges. J. Chem. Phys. 134, 1241 (2011)CrossRefGoogle Scholar
  5. 5.
    Weninger, C., et al.: Stimulated electronic x-ray Raman scattering. Phys. Rev. Lett. 111, 23 (2013)CrossRefGoogle Scholar
  6. 6.
    Weninger, C., Rohringer, N.: Stimulated resonant x-ray Raman scattering with incoherent radiation, Phys. Rev. A 88, 053421, 2013CrossRefADSGoogle Scholar
  7. 7.
    Rohringer, N., et al.: Atomic inner-shell x-ray laser at 1.46 nm pumped by an x-ray free electron laser. Nature 481, 488 (2012)CrossRefADSGoogle Scholar
  8. 8.
    Weninger, C., Rohringer, N.: Transient-gain photoionization x-ray laser. Phys. Rev. A 90, 063828 (2014)CrossRefADSGoogle Scholar
  9. 9.
    Kramers, H.A., Heisenberg, W.: Über die Streuung von Strahlung durch Atome. Z. Phys. 31, 681 (1925)zbMATHCrossRefADSGoogle Scholar
  10. 10.
    Skytt, P., Glans, P., Gunnelin, K., Guo, J., Nordgren, J.: Role of screening and angular distributions in resonant x-ray emission of CO. Phys. Rev. A 55, 134 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Kimberg, V., Rohringer, N.: Amplified x-ray emission from core-ionized diatomic molecules. Phys. Rev. Lett. 110, 043901 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Kimberg, V., Rohringer, N.: Manuscript in preparationGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • N. Rohringer
    • 1
    • 2
    Email author
  • V. Kimberg
    • 1
    • 2
  • C. Weninger
    • 1
    • 2
  • A. Sanchez-Gonzalez
    • 3
  • A. Lutman
    • 4
  • T. Maxwell
    • 4
  • C. Bostedt
    • 4
  • S. Carron Monterro
    • 4
  • A. O. Lindahl
    • 9
    • 11
  • M. Ilchen
    • 4
    • 12
  • R. N. Coffee
    • 4
    • 11
  • J. D. Bozek
    • 4
  • J. Krzywinski
    • 4
  • T. Kierspel
    • 2
    • 5
    • 6
  • T. Mullins
    • 2
    • 5
    • 6
  • J. Küpper
    • 2
    • 5
    • 6
  • B. Erk
    • 6
  • D. Rolles
    • 6
  • O. D. Mücke
    • 6
  • R. A. London
    • 7
  • M. Purvis
    • 8
  • D. Ryan
    • 8
  • J. J. Rocca
    • 8
  • R. Feifel
    • 9
  • R. Squibb
    • 9
  • V. Zhaunerchyk
    • 9
  • C. Såthe
    • 10
  • M. Agåker
    • 10
  • M. Mucke
    • 10
  • J. Nordgren
    • 10
  • J. E. Rubensson
    • 10
  1. 1.Max Planck Institute for the Physics of Complex SystemsDresdenGermany
  2. 2.Center for Free-Electron Laser ScienceHamburgGermany
  3. 3.Imperial CollegeLondonUnited Kingdom
  4. 4.Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkUSA
  5. 5.University of HamburgHamburgGermany
  6. 6.DESYHamburgGermany
  7. 7.Lawrence Livermore National LaboratoryLivermoreUSA
  8. 8.Colorado State UniversityFort CollinsUSA
  9. 9.Department of PhysicsUniversity of GothenburgGothenburgSweden
  10. 10.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  11. 11.Stanford PULSE Institute, SLAC National Accelerator LaboratoryMenlo ParkCalifornia
  12. 12.European XFEL GmbHHamburgGermany

Personalised recommendations