Process Visualization Techniques for Multi-perspective Process Comparisons

  • A. Pini
  • R. Brown
  • M. T. Wynn
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 219)


Organizations executing similar business processes need to understand the differences and similarities in activities performed across work environments. Presently, research interest is directed towards the potential of visualization for the display of process models, to support users in their analysis tasks. Although recent literature in process mining and comparison provide several methods and algorithms to perform process and log comparison, few contributions explore novel visualization techniques. This paper analyzes process comparison from a design perspective, providing some practical visualization techniques as analysis solutions. In order to support the needs of business analysts the design of the visual comparison has been tackled via three different points of view: the general model, the superimposed model and the side-by-side comparison. A case study is presented showing a preliminary evaluation of the application of process mining and visualization techniques to patient treatment across two Australian hospitals.


Comparative visualization Process mining Business process management 



This research is supported by Australian Centre for Health Services Innovation (#SG00009-000450).


  1. 1.
    van der Aalst, W.M.P., Netjes, M., Reijers, H.A.: Supporting the full BPM life-cycle using process mining and intelligent redesign. In: Siau, K. (ed.) Contemporary Issues in Database Design and Information Systems Development, ch. 4, IGI Global, Hershey, USA, pp. 100–132 (2007)Google Scholar
  2. 2.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  4. 4.
    Aigner, W., Miksch, S., Muller, W., Schumann, H., Tominski, C.: Visualizing time-oriented data: a systematic view. Comput. Graph. 31(3), 401–409 (2007)CrossRefGoogle Scholar
  5. 5.
    Andrews, K., Wohlfahrt, M., Wurzinger, G.: Visual graph comparison. In: 13th International Conference Information Visualisation, pp. 62–67 (2009)Google Scholar
  6. 6.
    Archambault, D.: Structural differences between two graphs through hierarchies. In: Proceedings of Graphics Interface 2009 (2009)Google Scholar
  7. 7.
    Buijs, J.C.A.M., Reijers, H.A.: Comparing business process variants using models and event logs. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P. (eds.) BPMDS 2014 and EMMSAD 2014. LNBIP, vol. 175, pp. 154–168. Springer, Heidelberg (2014) Google Scholar
  8. 8.
    Collins, C., Carpendale, S., Penn, G.: Visualization of uncertainty in lattices to support decision-making. In: Proceedings of the 9th Joint Eurographics/IEEE VGTC Conference on Visualization, pp. 51–58 (2007)Google Scholar
  9. 9.
    Cordes, C., Vogelgesang, T., Appelrath, H.-J.: A generic approach for calculating and visualizing differences between process models in multidimensional process mining. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Workshops. LNBIP, vol. 202, pp. 383–394. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  10. 10.
    Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  11. 11.
    Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Inf. Vis. 10(4), 289–309 (2011)CrossRefGoogle Scholar
  12. 12.
    Jablonski, S., Goetz, M.: Perspective oriented business process visualization. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 144–155. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Keim, D.: Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graphics 8(1), 1–8 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kleiner, N.: Delta analysis with workflow logs: aligning business process prescriptions and their reality. Requirements Eng. 10(3), 212–222 (2005)CrossRefGoogle Scholar
  15. 15.
    Kriglstein, S., Rinderle-Ma, S.: Change visualization in business processes - requirements analysis. In: VISIGRAPP/IVAPP. Rome, Italy (2012)Google Scholar
  16. 16.
    Kriglstein, S., Wallner, G., Rinderle-Ma, S.: A visualization approach for difference analysis of process models and instance traffic. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 219–226. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model differences in the absence of a change log. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    La Rosa, M., Dumas, M., Ter Hofstede, A.H., Mendling, J.: Configurable multi-perspective business process models. Inf. Syst. 36(2), 313–340 (2011)CrossRefGoogle Scholar
  19. 19.
    de Leoni, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Visual support for work assignment in process-aware information systems. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 67–83. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  20. 20.
    Li, C., Reichert, M., Wombacher, A.: Discovering process reference models from process variants using clustering techniques. Technical report TR-CTIT-08-30, Enschede, March 2008Google Scholar
  21. 21.
    Lin, Y., Gray, J., Jouault, F.: Dsmdiff: a differentiation tool for domain-specific models. Eur. J. Inf. Syst. 16(4), 349–361 (2007)CrossRefGoogle Scholar
  22. 22.
    MacEachren, A.M., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., Hetzler, E.: Visualizing geospatial information uncertainty: what we know and what we need to know. Cartography geographic Inf. Sci. 32(3), 139–160 (2005)CrossRefGoogle Scholar
  23. 23.
    Mendling, J., Simon, C.: Business process design by view integration. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 55–64. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  24. 24.
    Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Software Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  25. 25.
    Partington, A., Wynn, M., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for clinical processes: a comparative analysis of four australian hospitals. ACM Trans. Manage. Inf. Syst. 9(4), 1–18 (2013)Google Scholar
  26. 26.
    Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling personalized visualization of large business processes through parameterizable views. In: SAC 2012, EE 2012, pp. 1653–1660 (2012)Google Scholar
  27. 27.
    Sedlmair, M., Meyer, M., Munzner, T.: Design study methodology: reflections from the trenches and the stacks. IEEE Trans. Vis. Comput. Graphics 18(12), 2431–2440 (2012)CrossRefGoogle Scholar
  28. 28.
    Shaft, T.M., Vessey, I.: The role of cognitive fit in the relationship between software comprehension and modification. MIS Q. 30(1), 29–55 (2006)Google Scholar
  29. 29.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: IEEE Symposium on Visual Languages, pp. 336–343 (1996)Google Scholar
  30. 30.
    Suriadi, S., Mans, R.S., Wynn, M.T., Partington, A., Karnon, J.: Measuring patient flow variations: a cross-organisational process mining approach. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 43–58. Springer, Heidelberg (2014) Google Scholar
  31. 31.
    Tominski, C., Forsell, C., Johansson, J.: Interaction support for visual comparison inspired by natural behavior. IEEE Trans. Vis. Comput. Graphics 18(12), 2719–2728 (2012)CrossRefGoogle Scholar
  32. 32.
    Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features: enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66(3), 438–466 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.DensityDesign Research LabPolitecnico di MilanoMilanItaly
  2. 2.Business Process Management DisciplineQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations