Non-atomic Transition Firing in Contextual Nets

  • Thomas Chatain
  • Stefan Haar
  • Maciej Koutny
  • Stefan Schwoon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9115)

Abstract

The firing rule for Petri nets assumes instantaneous and simultaneous consumption and creation of tokens. In the context of ordinary Petri nets, this poses no particular problem because of the system’s asynchronicity, even if token creation occurs later than token consumption in the firing. With read arcs, the situation changes, and several different choices of semantics are possible. The step semantics introduced by Janicki and Koutny can be seen as imposing a two-phase firing scheme: first, the presence of the required tokens is checked, then consumption and production of tokens happens. Pursuing this approach further, we develop a more general framework based on explicitly splitting the phases of firing, allowing to synthesize coherent steps. This turns out to define a more general non-atomic semantics, which has important potential for safety as it allows to detect errors that were missed by the previous semantics. Then we study the characterization of partial-order processes feasible under one or the other semantics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)MATHCrossRefGoogle Scholar
  2. 2.
    Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., Schwoon, S.: Efficient unfolding of contextual Petri nets. Theor. Comput. Sci. 449, 2–22 (2012)MATHCrossRefGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event structures, and processes. Information and Computation 171(1), 1–49 (2001)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Busi, N., Pinna, G.M.: Non sequential semantics for contextual P/T nets. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 113–132. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  5. 5.
    Christensen, S., Hansen, N.D.: Coloured Petri nets extended with place capacities, test arcs and inhibitor arcs. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 186–205. Springer, Heidelberg (1993) CrossRefGoogle Scholar
  6. 6.
    Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591 (1991)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Fernandes, J., Koutny, M., Pietkiewicz-Koutny, M., Sokolov, D., Yakovlev, A.: Step persistence in the design of GALS systems. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 190–209. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation of functions. In: Proceedings, Symposium on Logic in Computer Science, pp. 72–85. IEEE Computer Society (1987)Google Scholar
  9. 9.
    Janicki, R.: Relational structures model of concurrency. Acta Inf. 45(4), 279–320 (2008)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Janicki, R., Koutny, M.: Invariants and paradigms of concurrency theory. In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 506, pp. 59–74. Springer, Heidelberg (1991) CrossRefGoogle Scholar
  11. 11.
    Janicki, R., Koutny, M.: Structure of concurrency. Theoretical Computer Science 112(1), 5–52 (1993)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16 (1995)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Janicki, R., Koutny, M.: Fundamentals of modelling concurrency using discrete relational structures. Acta Inf. 34, 367–388 (1997)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Juhás, G., Lorenz, R., Mauser, S.: Synchronous + concurrent + sequential = earlier than + not later than. In: Sixth International Conference on Application of Concurrency to System Design (ACSD 2006), pp. 261–272. IEEE Computer Society (2006)Google Scholar
  15. 15.
    Juhás, G., Lorenz, R., Mauser, S.: Causal semantics of algebraic Petri nets distinguishing concurrency and synchronicity. Fundam. Inform. 86(3), 255–298 (2008)MATHGoogle Scholar
  16. 16.
    Kleijn, H.C.M., Koutny, M.: Process semantics of general inhibitor nets. Inf. Comput. 190(1), 18–69 (2004)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kleijn, J., Koutny, M.: Causality in extensions of Petri nets. T. Petri Nets and Other Models of Concurrency 7, 225–254 (2013)Google Scholar
  18. 18.
    Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of boolean nets. Acta Informatica 50(1), 15–39 (2013)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lamport, L.: The mutual exclusion problem: part I - a theory of interprocess communication. J. ACM 33(2), 313–326 (1986)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition Petri nets. Mathematical Structures in Computer Science 7(4), 359–397 (1997)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Monica, D.D., Goranko, V., Montanari, A., Sciavicco, G.: Expressiveness of the interval logics of allen’s relations on the class of all linear orders: complete classification. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI/AAAI 2011, pp. 845–850 (2011)Google Scholar
  22. 22.
    Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Nebel, B., Bürckert, H.: Reasoning about temporal relations: A maximal tractable subclass of allen’s interval algebra. J. ACM 42(1), 43–66 (1995)MATHCrossRefGoogle Scholar
  24. 24.
    Rodríguez, C.: Verification Based on Unfoldings of Petri Nets with Read Arcs. PhD thesis, Laboratoire Spécification et Vérification, ENS Cachan, France, December 2013Google Scholar
  25. 25.
    Rodríguez, C., Schwoon, S.: Verification of Petri nets with read arcs. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 471–485. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  26. 26.
    Vogler, W.: A generalization of trace theory. RAIRO Infornatique théorique et Applications 25(2), 147–156 (1991)MATHMathSciNetGoogle Scholar
  27. 27.
    Vogler, W.: Fairness and partial order semantics. Inf. Process. Lett. 55(1), 33–39 (1995)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Vogler, W.: Partial order semantics and read arcs. Theoretical Computer Science 286(1), 33–63 (2002)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and finite prefix for nets with read arcs. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 501–516. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  30. 30.
    Wiener, N.: A contribution to the theory of relative position. Proc. of the Cambridge Philosophical Society 33(2), 313–326 (1914)Google Scholar
  31. 31.
    Winkowski, J.: Processes of contextual nets and their characteristics. Fundamenta Informaticae 36(1) (1998)Google Scholar
  32. 32.
    Winkowski, J.: Reachability in contextual nets. Fundamenta Informaticae 51(1–2), 235–250 (2002)MATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Chatain
    • 1
  • Stefan Haar
    • 1
  • Maciej Koutny
    • 2
  • Stefan Schwoon
    • 1
  1. 1.INRIA and LSV, CNRS and ENS CachanCachanFrance
  2. 2.University of Newcastle-upon-TyneNewcastle upon TyneUK

Personalised recommendations