Advertisement

Charlie – An Extensible Petri Net Analysis Tool

  • Monika HeinerEmail author
  • Martin Schwarick
  • Jan-Thierry Wegener
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9115)

Abstract

Charlie is an extensible thread-based Java tool for analysing Petri nets. Its built-in functionalities apply standard analysis techniques of Petri net theory (e.g. invariants, siphon/trap property) to determine structural and behavioural properties of place/transition Petri nets, complemented by explicit CTL and LTL model checking. Charlie comes with a plugin mechanism, which permits to easily extend its basic functionality as it has been demonstrated for, e.g., structural reduction and time-dependent Petri nets. Charlie’s primary focus is teaching. For thispurpose, it has a rule system comprising standard theorems of Petri net theory to possibly decide further properties based on the already determined ones. All applied rules are reported by default, so the user may keep track of all analysis steps. The tool is in use for model verification of technical systems, especially software-based systems, as well as for model validation of natural systems, i.e. biochemical networks, such as metabolic, signal transduction, and gene regulatory networks. It is publicly available at http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie.

Keywords

Analysis tool Place/transition petri nets Stochastic Petri nets Time-dependent petri nets Place/transition invariants Siphon/trap property Explicit CTL/LTL model checking Java Threads Plugin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeli, D., De Leenheer, P., Sontag, E.: A Petri net approach to the study of persistence in chemical reaction networks. Mathematical biosciences 210(2), 598–618 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Berthomieu, B., Vernadat, F.: Time Petri nets analysis with Tina. In: Proc. QEST 2006, pp. 123–124. IEEE CS Press (2006)Google Scholar
  3. 3.
    Blätke, M., Dittrich, A., Rohr, C., Heiner, M., Schaper, F., Marwan, W.: JAK/STAT signalling - an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems and synthetic biology. Molecular BioSystem 9(6), 1290–1307 (2013)CrossRefGoogle Scholar
  4. 4.
    Blätke, M., Heiner, M., Marwan, W.: Tutorial - Petri Nets in Systems Biology. Otto von Guericke University Magdeburg, Centre for Systems Biology, Tech. rep. (2011)Google Scholar
  5. 5.
    Blätke, M., Heiner, M., Marwan, W.: BioModel Engineering with Petri Nets, chap. 7, pp. 141–193. Elsevier Inc. (2015)Google Scholar
  6. 6.
    Blätke, M., Rohr, C., Heiner, M., Marwan, W.: A Petri Net based Framework for Biomodel Engineering, pp. 317–366. Modeling and Simulation in Science, Engineering and Technology. Springer, Birkhäuser Mathematics (2014)Google Scholar
  7. 7.
    Buchholz, P., Kemper, P.: A toolbox for the analysis of discrete event dynamic systems. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 483–486. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  8. 8.
    David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets. Springer (2004)Google Scholar
  9. 9.
    Dingle, N.J., Knottenbelt, W.J., Suto, T.: PIPE2: a tool for the performance evaluation of generalised stochastic Petri Nets. ACM SIGMETRICS Performance Evaluation Review 36(4), 34–39 (2009)CrossRefGoogle Scholar
  10. 10.
    Donaldson, R.: Modelling and Analysis of Structure in Cellular Signalling Systems. Ph.D. thesis, University of Glasgow (2012)Google Scholar
  11. 11.
    Fischer, A.: State-space-based Analysis of time-dependent Petri nets (in German). Diploma thesis, BTU Cottbus, Dep. of CS (2009)Google Scholar
  12. 12.
    Formanowicz, D., Kozak, A., Głowacki, T., Radom, M., Formanowicz, P.: Hemojuvelin-hepcidin axis modeled and analyzed using Petri nets. Journal of biomedical Informatics 46(6), 1030–1043 (2013)CrossRefGoogle Scholar
  13. 13.
    Franzke, A.: Charlie 2.0 - a multi-threaded Petri net analyser. Diploma thesis, BTU Cottbus, Dep. of CS (2009)Google Scholar
  14. 14.
    Gilbert, D., Heiner, M.: From petri nets to differential equations - an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  15. 15.
    Gilbert, D., Heiner, M., Rosser, S., Fulton, R., Gu, X., Trybiło, M.: A case study in model-driven synthetic biology. In: Hinchey, M., Pagnoni, A., Rammig, F.J., Schmeck, H. (eds.) 2nd IFIP Conference on Biologically Inspired Collaborative Computing (BICC 2008). IFIP, vol. 268, pp. 163–175. Springer, Boston (2008)CrossRefGoogle Scholar
  16. 16.
    Gratie, D., Petre, I.: Quantitative Petri Nets Models for the Heat Shock Response. Tech. Rep. 1068, Turku Centre for Computer Science (2013)Google Scholar
  17. 17.
    Gu, X., Trybiło, M., Ramsay, S., Jensen, M., Fulton, R., Rosser, S., Gilbert, D.: Engineering a novel self-powering electrochemical biosensor. Systems and synthetic biology, pp. 1–12 (2010)Google Scholar
  18. 18.
    Hardy, S., Iyengar, R.: Analysis of Dynamical Models of Signaling Networks with Petri Nets and Dynamic Graphs, pp. 225–251. Springer (2011)Google Scholar
  19. 19.
    Heiner, M.: Understanding Network Behaviour by Structured Representations of Transition Invariants - A Petri Net Perspective on Systems and Synthetic Biology, pp. 367–389. Natural Computing Series. Springer (2009)Google Scholar
  20. 20.
    Heiner, M., Donaldson, R., Gilbert, D.: Petri Nets for Systems Biology, chap. 3, pp. 61–97. Jones & Bartlett Learning, LCC (2010)Google Scholar
  21. 21.
    Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Heiner, M., Mahulea, C., Silva, M.: On the Importance of the Deadlock Trap Property for Monotonic Liveness. In: Int. Workshop on Biological Processes & Petri Nets (BioPPN), satellite event of Petri Nets 2010, pp. 39–54 (2010)Google Scholar
  23. 23.
    Heiner, M., Rohr, C., Schwarick, M.: MARCIE – model checking and reachability analysis done efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    Heiner, M., Schwarick, M., Tovchigrechko, A.: DSSZ-MC – a tool for symbolic analysis of extended petri nets. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 323–332. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  25. 25.
    Heiner, M., Sriram, K.: Structural analysis to determine the core of hypoxia response network. PLoS ONE 5(1), e8600 (2010)CrossRefGoogle Scholar
  26. 26.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  27. 27.
    Herajy, M., Heiner, M.: A steering server for collaborative simulation of quantitative petri nets. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 374–384. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  28. 28.
    Liu, F., Heiner, M.: Petri Nets for Modeling and Analyzing Biochemical Reaction Networks, chap. 9, pp. 245–272. Springer (2014)Google Scholar
  29. 29.
    Marwan, W., Wagler, A., Weismantel, R.: A mathematical approach to solve the network reconstruction problem. Mathematical Methods of Operations Research 67(1), 117–132 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Minervini, G., Panizzoni, E., Giollo, M., Masiero, A., Ferrari, C., Tosatto, S.: Design and Analysis of a Petri Net Model of the Von Hippel-Lindau (VHL) Tumor Suppressor Interaction Network. PloS one 9(6), e96986 (2014)CrossRefGoogle Scholar
  31. 31.
    Popova-Zeugmann, L., Heiner, M.: Worst-case analysis of concurrent systems with Duration Interval Petri Nets. In: Schnieder, E.; Abel, D. (eds.) Proc. 5. EKA 1997, Braunschweig, May 1997, IfRA 1997), pp. 162–179 (1997)Google Scholar
  32. 32.
    Rodriguez, E.M.: A Mathematical Model For Cephalostatin 1-Induced Apoptosis In Leukemic Cells. Ph.D. thesis, University of the Philippines, College of Science, Institute of Mathematics (2008)Google Scholar
  33. 33.
    Rohr, C., Marwan, W., Heiner, M.: Snoopy - a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7), 974–975 (2010)CrossRefGoogle Scholar
  34. 34.
    del Rosario, R., Mendoza, E., Oesterhelt, D.: Modelling the Bioenergetics of Halobacterium Salinarum with Petri Nets. Journal of Computational and Theoretical Nanoscience 6(8), 1965–1976 (2009)CrossRefGoogle Scholar
  35. 35.
    Schulz, K.: An Extension of the Snoopy Software to Process and Manage Petri Net Animations (in German). Bachelor thesis, BTU Cottbus, Dep. of CS, November 2008Google Scholar
  36. 36.
    Schwarick, M., Rohr, C., Heiner, M.: Marcie - model checking and reachability analysis done efficiently. In: Proc. QEST 2011. pp. 91–100. IEEE CS Press (2011)Google Scholar
  37. 37.
    Schwarick, M.: A Petri net analysis tool (in German). Diploma thesis, BTU Cottbus, Dep. of CS (2006)Google Scholar
  38. 38.
    Shinar, G., Feinberg, M.: Structural Sources of Robustness in Biochemical Reaction Networks. Science 327, 1389–1391 (2010)CrossRefGoogle Scholar
  39. 39.
    Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming techniques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  40. 40.
    Starke, P.H., Roch, S.: INA, Integrated Net Analyzer, Version 2.2, Manual. Humboldt University Berlin, Dep. of CS (2003)Google Scholar
  41. 41.
    Wegener, J., Schwarick, M., Heiner, M.: A Plugin System for Charlie. In: Proc. International Workshop on Concurrency, Specification, and Programming (CS&P 2011), pp. 531–554. Białystok University of Technology (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Monika Heiner
    • 1
    Email author
  • Martin Schwarick
    • 1
  • Jan-Thierry Wegener
    • 2
  1. 1.Brandenburg Technical UniversityCottbusGermany
  2. 2.University Blaise PascalClermont-Ferrand IIFrance

Personalised recommendations