Advertisement

Mechanical Aspects of Cardiac Performance

  • Michael K. LoushinEmail author
  • Jason L. Quill
  • Paul A. Iaizzo

Abstract

This chapter is a review of commonly utilized monitoring techniques to assess the function of the general cardiovascular system. Specifically, means to assess arterial blood pressure, central venous pressure, pulmonary artery pressure, mixed venous oxygen saturation, cardiac output, pressure-volume loops, and Frank-Starling curves are described. Basic physiological principles underlying cardiac function are also briefly discussed.

Keywords

Cardiac pressure-volume loops Blood pressure monitoring Central venous pressure monitoring Pulmonary artery pressure monitoring Cardiac output Cardiac index monitoring Mixed venous saturation monitoring Flow monitoring Implantable monitoring 

Supplementary material

145597_3_En_20_MOESM1_ESM.tif (939 kb)
JPG 20.1. Typical monitor display of electrocardiogram, blood pressures and SvO2 (TIFF 939 KB)
145597_3_En_20_MOESM2_ESM.tif (1 mb)
JPG 20.2. Cannulation of a peripheral artery (TIFF 1,065 KB)
145597_3_En_20_MOESM3_ESM.tif (739 kb)
JPG 20.3. A patient’s wrist is sterilely prepped and draped prior to cannulation of the radial artery (TIFF 739 KB)
145597_3_En_20_MOESM4_ESM.tif (610 kb)
JPG 20.4. Typical pressure transducer for monitoring blood pressures (TIFF 611 KB)
145597_3_En_20_MOESM5_ESM.tif (707 kb)
JPG 20.5. Millar catheter (TIFF 707 KB)
145597_3_En_20_MOESM6_ESM.tif (291 kb)
JPG 20.6. Sensors on a Millar catheter (TIFF 291 KB)
145597_3_En_20_MOESM7_ESM.tif (716 kb)
JPG 20.7. Typical central venous access kit (TIFF 717 KB)
145597_3_En_20_MOESM8_ESM.tif (775 kb)
JPG 20.8. Cannulation of right internal jugular vein (TIFF 775 KB)
145597_3_En_20_MOESM9_ESM.tif (572 kb)
JPG 20.9. Typical pulmonary artery catheter. This catheter also has the ability to continuously monitor cardiac output (TIFF 572 KB)
145597_3_En_20_MOESM10_ESM.tif (713 kb)
JPG 20.10. Inflated balloon at the distal tip of pulmonary artery catheter (TIFF 714 KB)
145597_3_En_20_MOESM11_ESM.tif (1 mb)
JPG 20.11. Pulmonary artery catheter with ability to continuously monitor cardiac output and mixed venous saturation (SvO2) (TIFF 1,032 KB)
145597_3_En_20_MOESM12_ESM.jpg (196 kb)
JPG 20.12. Angiogram showing an arterial dissection (JPEG 196 KB)

Video 20.1. Pressure-volume loops.wmv (swine) (WMV 47,421 KB)

Video 20.2. Pressure catheter placement.wmv (swine) (WMV 59,695 KB)

References

  1. 1.
    Sengupta PP, Khandheria BK, Korinek J et al (2006) Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J Am Coll Cardiol 47:163–172CrossRefPubMedGoogle Scholar
  2. 2.
    Ratcliffe MB, Gupta KB, Streicher JT et al (1995) Use of sonomicrometry and multidimensional scaling to determine the three-dimensional coordinates of multiple cardiac locations: feasibility and initial implementation. IEEE Trans Biomed Eng 42:587–597CrossRefPubMedGoogle Scholar
  3. 3.
    Gorman JH III, Gupta KB, Streicher JT et al (1996) Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg 112:712–725CrossRefPubMedGoogle Scholar
  4. 4.
    Meyer SA, Wolf PD (1997) Application of sonomicrometry and multidimensional scaling to cardiac catheter tracking. IEEE Trans Biomed Eng 44:1061–1067CrossRefPubMedGoogle Scholar
  5. 5.
    Geddes LA, Baker LE (1967) The specific resistance of biological material–a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293CrossRefPubMedGoogle Scholar
  6. 6.
    Baan J, van der Velde ET, de Bruin HG et al (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:812–823CrossRefPubMedGoogle Scholar
  7. 7.
    van der Velde ET, van Dijk AD, Steendijk P et al (1992) Left ventricular segmental volume by conductance catheter and cine-CT. Eur Heart J 13 Suppl E:15–21Google Scholar
  8. 8.
    White PA, Redington AN (2000) Right ventricular volume measurement: can conductance do it better? Physiol Meas 21:R23–R41CrossRefGoogle Scholar
  9. 9.
    Hettrick DA, Battocletti J, Ackmann J, Linehan J, Warltier DC (1998) In vivo measurement of real-time aortic segmental volume using the conductance catheter. Ann Biomed Eng 26:431–440CrossRefPubMedGoogle Scholar
  10. 10.
    Gardner RM (1996) Accuracy and reliability of disposable pressure transducers coupled with modern monitors. Crit Care Med 24:879–882CrossRefPubMedGoogle Scholar
  11. 11.
    Skeehan TM, Thys DM (1995) Monitoring of the cardiac surgical patient. In: Hensley FA, Martin DE (eds) A practical approach to cardiac anesthesia, 2nd edn. Little, Brown and Company, Boston, p 102Google Scholar
  12. 12.
    Gorback MS (1988) Considerations in the interpretation of systemic pressure monitoring. In: Lumb PD, Bryan-Brown CW (eds) Complications in critical care medicine. Year Book, Chicago, p 296Google Scholar
  13. 13.
    Shasby DM, Dauber IM, Pfister S et al (1980) Swan-Ganz catheter location and left atrial pressure determine the accuracy of wedge pressure when positive end expiratory pressure is used. Chest 80:666–670CrossRefGoogle Scholar
  14. 14.
    Snyder JV, Carroll GC (1982) Tissue oxygenation: a physiologic approach to a clinical problem. Curr Probl Surg 19:650CrossRefPubMedGoogle Scholar
  15. 15.
    Stanley TE, Reves JG (1994) Cardiovascular monitoring. In: Miller RD (ed) Anesthesia, 4th edn. Churchill Livingstone, Boston, p 1167Google Scholar
  16. 16.
    Swan HJC, Ganz W, Forrester J, Marcus H, Diamon G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451CrossRefPubMedGoogle Scholar
  17. 17.
    Practice Guidelines for Pulmonary Artery Catheterization: An Updated Report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology 2003;99:988–1014Google Scholar
  18. 18.
    West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724PubMedGoogle Scholar
  19. 19.
    Wesseling KH (1996) Finger arterial pressure measurement with Finapres. Z Kardiol 3:38–44Google Scholar
  20. 20.
    Brandstetter RD, Grant GR, Estilo M, Rahim R, Sing K, Gitler B (1998) Swan-Ganz catheter: misconceptions, pitfalls, and incomplete user knowledge-an identified trilogy in need of correction. Heart Lung 27:218–222CrossRefPubMedGoogle Scholar
  21. 21.
    Wittnich C, Trudel J, Zidulka A, Chiu RC (1986) Misleading “pulmonary wedge pressure” after pneumonectomy: its importance in postoperative fluid therapy. Ann Thorac Surg 42:192–196CrossRefPubMedGoogle Scholar
  22. 22.
    Van Aken H, Vandermeersch E (1988) Reliability of PCWP as an index for left ventricular preload. Br J Anaesth 60:85S–89SCrossRefPubMedGoogle Scholar
  23. 23.
    Stanley TE, Reves JG (1994) Cardiovascular monitoring. In: Miller RD (ed) Anesthesia, 4th edn. Churchill Livingstone, Boston, pp 1184–1185Google Scholar
  24. 24.
    Fegler G (1954) Measurement of cardiac output in anesthetized animals by thermodilution method. Q J Exp Physiol 39:153CrossRefPubMedGoogle Scholar
  25. 25.
    Pearl RGB, Rosenthal MH, Mielson L et al (1986) Effect of injectate volume and temperature on thermodilution cardiac output determination. Anesthesiology 64:798CrossRefPubMedGoogle Scholar
  26. 26.
    Reich DL, Moskowitz DM, Kaplan JA (1999) Hemodynamic monitoring. In: Kaplan JA, Reich DL, Konstaelt SN (eds) Cardiac anesthesia, 4th edn. WB Saunders Co, PhiladelphiaGoogle Scholar
  27. 27.
    Burchell SA, Yu M, Takiguchi SA, Ohta RM, Myers SA (1997) Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med 25:388–391CrossRefPubMedGoogle Scholar
  28. 28.
    de Figueiredo LFP, Malbouisson LMS, Varicoda EY et al (1999) Thermal filament continuous thermodilution cardiac output delayed response limits its value during acute hemodynamic instability. J Trauma 47:288–293CrossRefGoogle Scholar
  29. 29.
    Mihaljevi T, vonSegesser LK, Tonz M et al (1995) Continuous versus bolus thermodilution cardiac output measurements: a comparative study. Crit Care Med 23:944–949CrossRefGoogle Scholar
  30. 30.
    Mihm FG, Gettinger A, Hanson CW et al (1998) A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med 26:1346–1350CrossRefPubMedGoogle Scholar
  31. 31.
    Della RG, Costa MG, Pompei L et al (2002) Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 88:350–356CrossRefGoogle Scholar
  32. 32.
    Pamley CL, Pousman RM (2002) Noninvasive cardiac output monitoring. Curr Opin Anaesthesiol 15:675–680CrossRefGoogle Scholar
  33. 33.
    Christensen P, Clemensen P, Andersen PK et al (2000) Thermodilution versus inert gas rebreathing for estimation of effective pulmonary blood flow. Crit Care Med 28:51–56CrossRefPubMedGoogle Scholar
  34. 34.
    Imhoff M, Lehner JH, Lohlein D (2000) Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients. Crit Care Med 28:2812–2818CrossRefPubMedGoogle Scholar
  35. 35.
    Shoemaker WC, Wo CC, Bishop MH et al (1994) Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation. Crit Care Med 22:1907–1912CrossRefPubMedGoogle Scholar
  36. 36.
    Linton RA, Band DM, Haire KM (1994) A new method of measuring cardiac output in main using lithium dilution. Br J Anaesth 71:262–266CrossRefGoogle Scholar
  37. 37.
    Linton R, Band D, O’Brian T et al (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25:1767–1768CrossRefGoogle Scholar
  38. 38.
    Kurita T, Morita K, Kato S et al (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79:770–775CrossRefPubMedGoogle Scholar
  39. 39.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377CrossRefPubMedGoogle Scholar
  40. 40.
    Band DM, Linton RA, Jonas MM et al (1997) The shape of indicator dilution curves used for cardiac output measurement in man. J Physiol 498:225–229PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Shoemaker WC (2002) New approaches to trauma management using severity of illness and outcome prediction based on noninvasive hemodynamic monitoring. Surg Clin North Am 82:245–255CrossRefPubMedGoogle Scholar
  42. 42.
    Shoemaker WC, Wo CC, Chan L et al (2001) Outcome prediction of emergency patients by noninvasive hemodynamic monitoring. Chest 120:528–537CrossRefPubMedGoogle Scholar
  43. 43.
    Drazner MH, Thompson B, Rosenberg PB et al (2002) Comparisons of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol 89:993–995CrossRefPubMedGoogle Scholar
  44. 44.
    Binder JC, Parkin WG (2001) Non-invasive cardiac output determination: comparison of a new partial-rebreathing technique with thermodilution. Anaesth Intensive Care 28:427–430Google Scholar
  45. 45.
    Maxwell RA, Gibson JB, Slade JB et al (2001) Noninvasive cardiac output by partial CO2 rebreathing after severe chest trauma. J Trauma 51:849–853CrossRefPubMedGoogle Scholar
  46. 46.
    Tachibana K, Imanaka H, Miyano H et al (2002) Effect of ventilatory settings on accuracy of cardiac output measurement using partial CO2 rebreathing. Anesthesiology 96:96–102CrossRefPubMedGoogle Scholar
  47. 47.
    Botero M, Lobato EB (2001) Advances in noninvasive cardiac output monitoring: an update. J Cardiothorac Vasc Anesth 15:631–640CrossRefPubMedGoogle Scholar
  48. 48.
    Kotake Y, Moriyama K, Innami Y et al (2003) Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery. Anesthesiology 99:283–288CrossRefPubMedGoogle Scholar
  49. 49.
    Keech J, Reed RL II (2003) Reliability of mixed venous oxygen saturation as an indicator of the oxygen extraction ratio demonstrated by a large patient data set. J Trauma 54:236–241CrossRefPubMedGoogle Scholar
  50. 50.
    Snyder JV, Carroll GC (1982) Tissue oxygenation: a physiologic approach to a clinical problem. Curr Probl Surg 19:650CrossRefPubMedGoogle Scholar
  51. 51.
    Jain A, Shroff SG, Jnicki JS et al (1991) Relation between venous oxygen saturation and cardiac index. Nonlinearity and normalization for oxygen uptake and hemoglobin. Chest 99:1403–1409CrossRefPubMedGoogle Scholar
  52. 52.
    Inomata S, Nishikawa T, Taguchi M (1994) Continuous monitoring of mixed venous oxygen saturation for detecting alterations in cardiac output after discontinuation of cardiopulmonary bypass. Br J Anaesth 72:11–16CrossRefPubMedGoogle Scholar
  53. 53.
    Rivers E, Nguyen B, Vastad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377CrossRefPubMedGoogle Scholar
  54. 54.
    Kraft P, Steltzer H, Hiesmayr M et al (1993) Mixed venous oxygen saturation in critically ill septic shock patients: the role of defined events. Chest 103:900–906CrossRefGoogle Scholar
  55. 55.
    Waller JL, Kaplan JA, Bauman LI et al (1982) Clinical evaluation of a new fiberoptic catheter oximeter during cardiac surgery. Anesth Analg 61:676–679CrossRefPubMedGoogle Scholar
  56. 56.
    Vedrinne C, Bastien O, De Varax R et al (1997) Predictive factors for usefulness of fiberoptic pulmonary artery catheter for continuous oxygen saturation in mixed venous blood monitoring in cardiac surgery. Anesth Analg 85:2–10PubMedGoogle Scholar
  57. 57.
    Goldman RH, Klughaupt M, Metcalf T et al (1968) Measured central venous oxygen saturation in patients with myocardial infarction. Circulation 38:941–946CrossRefPubMedGoogle Scholar
  58. 58.
    Berridye JC (1992) Influence of cardiac output on correlation between mixed venous and central venous oxygen saturation. Br J Anaesth 89:409–410CrossRefGoogle Scholar
  59. 59.
    Davies GG, Mendehall J, Symrey T (1988) Measurement of right atrial oxygen saturation by fiberoptic oximetry accurately reflects mixed venous oxygen saturation in swine. J Clin Monit 4:99–102CrossRefPubMedGoogle Scholar
  60. 60.
    Rivers EP, Ander DS, Powell D (2001) Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care 7:204–211CrossRefPubMedGoogle Scholar
  61. 61.
    Lee J, Wright F, Barber R et al (1972) Central venous oxygen saturation in shock: a study in man. Anesthesiology 36:472–478CrossRefPubMedGoogle Scholar
  62. 62.
    Scheinman MM, Brown MA, Rapaport E (1969) Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation 40:165–172CrossRefPubMedGoogle Scholar
  63. 63.
    Edwards JD, Mayall RM (1998) Importance of the sampling site for measurement of mixed venous oxygen saturation in shock. Crit Care Med 26:1356–1360CrossRefPubMedGoogle Scholar
  64. 64.
    Bonow RO, Carabello B, de Leon AC et al (1998) ACC/AHA guidelines for the management of patients with valvular heart disease. J Heart Valve Dis 7:672–707PubMedGoogle Scholar
  65. 65.
    Yoganathan AP, Chandran KB, Sotiropoulos F (2005) Flow in prosthetic heart valves: state-of-the-art and future directions. Ann Biomed Eng 33:1689–1694CrossRefPubMedGoogle Scholar
  66. 66.
    Brignole M, Sutton R, Menozzi C et al (2006) Lack of correlation between the responses to tilt testing and adenosine triphosphate test and the mechanism of spontaneous neurally mediated syncope. Eur Heart J 27:2232–2239CrossRefPubMedGoogle Scholar
  67. 67.
    Deharo JC, Jego C, Lanteaume A, Djiane P (2006) An implantable loop recorder study of highly symptomatic vasovagal patients: the heart rhythm observed during a spontaneous syncope is identical to the recurrent syncope but not correlated with the head-up tilt test or adenosine triphosphate test. J Am Coll Cardiol 47:587–593CrossRefPubMedGoogle Scholar
  68. 68.
    Moya A, Brignole M, Menozzi C et al (2001) Mechanism of syncope in patients with isolated syncope and in patients with tilt-positive syncope. Circulation 104:1261–1267CrossRefPubMedGoogle Scholar
  69. 69.
    Strickberger SA, Benson DW, Biaggioni I et al (2006) AHA/ACCF scientific statement on the evaluation of syncope. Circulation 113:316–327CrossRefPubMedGoogle Scholar
  70. 70.
    Brignole M, Alboni P, Benditt DG et al (2004) Guidelines on management (diagnosis and treatment) of syncope-update 2004. Eur Heart J 25:2054–2072CrossRefPubMedGoogle Scholar
  71. 71.
    Adamson PB, Magalski A, Braunschweig F et al (2003) Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol 41:565–571CrossRefPubMedGoogle Scholar
  72. 72.
    Reynolds DW, Bartelt N, Taepke R, Bennett TD (1995) Measurement of pulmonary artery diastolic pressure from the right ventricle. J Am Coll Cardiol 25:1176–1182CrossRefPubMedGoogle Scholar
  73. 73.
    Stevenson LW, Perloff JK (1989) The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA 261:884–888CrossRefPubMedGoogle Scholar
  74. 74.
    Wilson JR, Hanamanthu S, Chomsky DB, Davis SF (1999) Relationship between exertional symptoms and functional capacity in patients with heart failure. J Am Coll Cardiol 33:1943–1947CrossRefPubMedGoogle Scholar
  75. 75.
    Bennett T, Kjellstrom B, Taepke R, Ryden L (2005) Development of implantable devices for continuous ambulatory monitoring of central hemodynamic values in heart failure patients. Pacing Clin Electrophysiol 28:573–584CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael K. Loushin
    • 1
    Email author
  • Jason L. Quill
    • 2
  • Paul A. Iaizzo
    • 3
  1. 1.Department of AnesthesiologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Medtronic, Inc.MinneapolisUSA
  3. 3.Department of SurgeryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations